
CGI2014 manuscript No.
(will be inserted by the editor)

Hand-Held 3D Light Field Photography and Applications

Daniel Donatsch · Siavash Arjomand Bigdeli · Philippe Robert ·
Matthias Zwicker

Abstract We propose a method to acquire 3D light

fields using a hand-held camera, and describe several

computational photography applications facilitated by

our approach. As our input we take an image sequence

from a camera translating along an approximately lin-

ear path with limited camera rotations. Users can ac-

quire such data easily in a few seconds by moving a

hand-held camera. We include a novel approach to re-

sample the input into regularly sampled 3D light fields

by aligning them in the spatio-temporal domain, and

a technique for high-quality disparity estimation from

light fields. We show applications including digital refo-

cusing and synthetic aperture blur, foreground removal,

selective colorization, and others.

Keywords 3D light fields, computational photogra-

phy, disparity estimation, digital refocusing

1 Indroduction

Modern smartphones and tablet computers with their

ever increasing computational power provide fascinat-

ing opportunities to implement computational photog-

raphy applications without resorting to off-line compu-

tation. In this paper, we describe a method for hand-

held 3D light field photography. As input we take image
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sequences captured with a hand-held camera along ap-

proximately linear trajectories. Capturing such data is

a matter of a few seconds and does not require any extra

equipment. At the core of our approach then is an effi-

cient method to resample the input image sequence into

a regularly sampled 3D light field, that is, the light field

corresponds to a linear camera motion with equidistant

views. This light field then opens up the possibility for

a variety of further processing. First, we present a high

quality algorithm for disparity estimation. Based on the

disparity map, we then propose applications for digi-

tal refocusing, foreground removal, segmentation, ob-

ject insertion, and multiview autostereo output.

Our approach shares similarities with recent tech-

niques that attempt to perform multi-view 3D recon-

struction [1] and 4D light field acquisition [2] on mo-

bile devices. The main goal of multi-view reconstruc-

tion techniques is to produce full 3D models, which can

then be used, for example, for 3D printing. While these

techniques produce impressive results, they require sev-

eral minutes of user interaction to obtain high quality

reconstructions. Similarly, unstructured 4D light fields

require the acquisition of many images from viewpoints

distributed over a 2D domain, for example roughly on

a hemisphere around an object of interest. In contrast,

data capturing for our approach takes just a few sec-

onds. The focus of our approach is not on full 3D re-

construction or image based rendering, but on provid-

ing advanced computational photography tools. In sum-

mary, we make the following contributions:

– An efficient technique for resampling image sequences

along an approximately linear camera trajectory into

3D light fields.

– A high quality disparity estimation technique based

on 3D light fields.
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Fig. 1 Overview of our processing pipeline.

– A technique to generate out-of-focus blur leveraging

3D light field data.

– A proof-of-concept implementation demonstrating

feasibility of our approach on a mobile device.

Figure 1 shows an overview of our pipeline. Given an

input image sequence from a hand-held camera under

a roughly linear trajectory, we first resample the data

into a regularly sampled 3D light field (Section 3) and

then perform disparity estimation (Section 4). Finally,

we leverage this data for several computational pho-

tography applications (Section 5), including digital re-

focusing, foreground removal, segmentation, object in-

sertion, and multiview autostereo output. Finally, we

present results from a proof of concept application for

mobile devices in Section 6.

2 Related Work

Resampling image sequences from approximately linear

camera motions into 3D light fields is similar to video

stabilization. Our approach is most related to the work

by Feng et al. [3]. They proposed to use a linear analysis

of feature tracks in the input video to recover a lower di-

mensional subspace, where the projection into the sub-

space is related to the camera motion. By smoothing

the projection matrix they then obtain smoothed fea-

ture tracks. In contrast to their approach, we solve an

optimization problem to obtain a linear camera trajec-

tory that best approximates the input camera motion.

We also resample the input images temporally to obtain

a camera motion with constant speed. Similarly to their

technique we render the output views using content pre-

serving image warps [4]. Video stabilization can also be

solved by reconstructing the 3D camera path [4], or

by smoothing 2D feature trajectories under additional

constraints [5]. Subspace analysis is attractive for us be-

cause it avoids the complexities and robustness issues

with reconstructing the full 3D camera motion, but it

provides enough information to achieve a linear camera

motion at constant speed.

Our disparity estimation algorithm is inspired by

the recent work of Rhemann et al. [6] and Kim et al. [7],

whereas the latter represents the state-of-the art for dis-

parity estimation from light fields. Kim et al. showed

that very high quality disparity estimation is possible

from light fields with high spatio-angular resolution by

estimating disparity scores for single pixels. We use a

similar approach to obtain initial estimates for dispar-

ity scores. Then we use an efficient edge aware filter

to remove noise in our initial score volume of disparity

hypotheses as proposed by Rhemann et al. While they

apply the guided image filter [8] for this purpose, we are

building on domain transform filtering [9], which allows

us to easily include additional confidence values for the

disparity hypotheses in the filtering process. We present

a comparison of our approach and these techniques us-

ing standard datasets in Section 4, demonstrating the

improved quality of our method.

Digital refocusing is one of the main applications of

our framework. Ng [10] and Isaksen et al. [11] showed

in their seminal work how 4D light fields can be used

to refocus digital images after the fact. Unfortunately,

applying the same techniques directly to 3D light fields

would lead to unnatural one-dimensional out-of-focus

blur. In our approach, we leverage our disparity maps to

combine 3D light field refocusing with an image based

blur to achieve convincing results. An even simpler ap-

proach to achieve digital refocusing would be to use a

focus stack, which has been implemented in commer-

cial mobile applications [12]. These techniques, how-

ever, cannot increase the defocus beyond the limits im-

posed by the aperture of the camera. Our approach al-

lows for a very large synthetic aperture, and we provide

additional functionality such as completely removing

thin foreground objects, inspired by the work by Joshi

et al. [13]. Defocus blur can also be manipulated us-

ing image processing techniques [14], but the quality of

this approach is limited since it is purely image based,

and it produces artifacts in particular when foreground

objects are out of focus.

Beyond refocusing, our technique enables other light

field processing techniques such as alpha matting [15].

We found, however, that in practice a simpler approach

using edge aware filtering is more robust. Finally, the

3D light fields produced by our technique can also be

used for multiview autostereo displays [16].

3 Spatio-Temporal 3D Light Field Resampling

The input to our method is an image sequence from

a camera sweep, similar to a sweep panorama. The

sweep should be a left-to-right (or right-to-left), ap-

proximately linear camera motion without significant

camera rotation. The user then picks one view as a ref-

erence image, which we will use to resample the 3D

light field as described below, compute a disparity map

(Section 4), and perform our applications (Section 5). A

camera sweep acquired using a hand-held device is un-

likely to be perfectly linear, and the images usually are
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Fig. 2 Overview of our resampling. From the input sequence
(top), we first search for a horizontal camera path (middle).
Then, we resample this path regularly and compute equidis-
tant views (bottom).

non-equidistant samples along the camera path. Hence

we perform a linearization of the camera path in a first

step (Figure 2, Sections 3.1 to 3.3). In a second step, we

produce new views from equidistant camera positions

along this linear path (Section 3.4).

3.1 Feature Trajectory Matrix

Our stabilization and resampling process is based on

Liu et al.’s subspace video stabilization [3]. We begin

with feature tracking and feature matching, and obtain

a collection of feature trajectories {(xit, yit)}, where i is

the feature index, and (xit, y
i
t) are the coordinates of

the feature on frame t. We collect the trajectories in a

trajectory matrix,

M =


x11 x12 . . . x1F
y11 y12 . . . y1F

...

xN1 xN2 . . . xNF
yN1 yN2 . . . yNF

 , (1)

where F is the number of frames of the input sequence

and N the number of trajectories we found. Not all

features can be tracked over the full duration of the

video in general, and for missing features we set their

corresponding entries in M to zero.

3.2 Factorization

The seminal work by Irani [17] showed that the trajec-

tory matrix M can be approximated by a matrix with

rank 9. Irani factorizes M into two matrices C and E.

The feature coefficient matrix C ∈ R2N×9 describes the

3D structure of the N feature points, and the camera

matrix E ∈ R9×F represents the F camera positions
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Fig. 3 We show a part of the feature trajectory matrix.
Trajectories (white) are ordered according to their first ap-
pearance. The initial factorization window is red, and a sec-
ond window is green. With the C0 matrix entries from the
first window (green dotted lines) and the additional frames
of these trajectories (solid part of green lines) in the next
window we compute E1. Next we compute coefficients for
trajectories that span the second window, but did not span
the previous one completely (dashed green lines).

and the projections of the features onto the frames. We

will exploit this in Section 3.3 where we search for a new

camera matrix which describes a linear camera motion.

Since CE is a full matrix, we multiply it element-wise

with a binary matrix W consisting of ones where M

has a non-zero entry, and zeros elsewhere. Hence, the

matrix factorization we look for becomes

M ≈W � CE, (2)

where � denotes element-wise multiplication.

We incrementally factorize M with the moving fac-

torization method described by Liu et al. in [3]. In our

approach, we select our initial window such that the ref-

erence frame Fm is in its center. The initial window is

depicted in red in Figure 3. We then collect all trajecto-

ries that span the whole window in a trajectory matrix

M0, which we decompose using SVD. By truncating

the resulting matrices to 9 rows resp. columns and dis-

tributing the square roots of the 9 largest eigenvalues to

the left and right matrices we get a camera matrix E0

and a coefficient matrix C0. Next, we move the window

forward as depicted in green in Figure 3, and we search

again for the trajectories that span the whole window.

Since now we have some trajectories that spanned the

previous window, too, we already have coefficients in

C0 for them. These cases are depicted with green dot-

ted lines in Figure 3. With these coefficients we can

compute the missing entries for the camera matrix E1,

which corresponds to the frames that are not covered

by the previous factorization windows. The camera ma-

trix is then complete for the current window, and we
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can compute the feature coefficients C1 for the new tra-

jectories that completely cover the current factorization

window (and have not been computed before). We mark

these trajectories with green dashed lines in Figure 3.

Finally, we repeat this process forward and backward in

time until all frames are processed. For a more formal

description we refer to [3].

In the process above, we compute the coefficients in

C for each feature with the knowledge of only one fac-

torization window, although most feature tracks extend

beyond a single window. The restriction to single win-

dows may fail if, for example, the camera moves only

very little during this window and does not constrain

C enough. Therefore, we verify the validity of the co-

efficients of each feature by checking if the difference

between the approximation using the factorization and

the input feature location ever exceeds 3 pixels. If this

test fails, we recompute the feature coefficients by tak-

ing into account the whole feature trajectory and test

the factorization error again. In the end, we keep only

trajectories for which the approximation never differs

more than 3 pixels.

3.3 Linear Camera Motion

To construct a 3D light field we require a linear camera

path and completely horizontal feature trajectories. In

addition, the camera and the features should stay as

close as possible to the input. Hence we seek trajecto-

ries with constant y-coordinates, and the x-coordinates

along the linearized camera path should stay as close

as possible to the input. Remember that we factorized

the trajectory matrix into a feature coefficient matrix

C and a camera matrix E. Further, we can split the co-

efficient matrix into submatrices Cx and Cy, which give

rise to the x- and y-coordinates of the feature trajecto-

ries, respectively. With that in mind, we now search for

a new matrix Ê, such that CyÊ is row-wise constant.

Since our desired camera motion is linear, the columns

of Ê representing the cameras in each frame must fol-

low a linear model. This is, Ê = EsT + Eb, where Es

and Eb are both column vectors of height 9, and T is a

row vector of length F . Intuitively, the vector T marks

the points in time each frame was captured. Our goal

is now to determine the unknowns Es, Eb, and T .

We further reduce the degrees of freedom of the sys-

tem by holding the reference frame Fm fixed. As a con-

sequence, the y-coordinate for all trajectories is given

by that frame. We then create a matrix δM containing

the differences of the feature coordinates in the trajec-

tory matrix M to the location in the reference frame

Fm. Note that the column m of δM is all zero. We con-

clude that Tm = 0 and Mm = Wm�CEb. The subscript

Fig. 4 We show the EPI of the input sequence on top. Lines
may become thinner or wider (green box) or may disappear
(red box). In the middle is the EPI after the linearization
of the camera path. The structure of the light field is now
clearly visible. Still, the lines are curved as the comparison
to the blue line shows. In the bottom EPI the lines became
straight after temporal resampling.

m denotes the m-th column of M and W respectively,

and the m-th entry of T . It follows that Eb is equal to

the m-th column of E. Hence, our problem reduces to

the minimization

arg min
T,Es
||Cy(EsT )||+ α||δMx −Wx � Cx(EsT )||. (3)

The first term pushes the y-coordinates towards the

ones in Fm. The second term keeps the x-coordinates

where they were on the input frames and prevents the

system from returning the trivial solution, and α is a

factor to balance the two terms. We usually obtained

best results with α = 1.

3.4 Rendering of Output Views

We finally compute the output feature locations and

render the views of the regularly sampled 3D light field.

With T and Es given, and {(xim, yim)} the feature lo-

cations on the reference frame, the feature locations on

frame j on a perfectly linearly moving camera are

{(xim, yim) + (Ci
xE

sTj , C
i
yE

sTj)}, (4)

where Tj denotes the j-th entry of T . Still, it is possible

that the camera changes speed along its linear trajec-

tory. This leads to curved lines in the EPI as we show

in Figure 4. To avoid this, we manipulate T . We set

∆t = min(|min(T )|, |max(T )|)/n (5)

where n is an arbitrary number of views we want to

create on each side of the reference frame. For the l-th

output image, with l ∈ {−n, ..., n}, we compute its time
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t = l∆t, and we use t to compute the new x-coordin-

ates. For the y-coordinates we use the location on the

reference frame Fm directly. This leads to the output

feature locations {(xim, yim) + (Ci
xE

st, 0)}.
We render the output view by searching for t’s next

smaller and larger entry in T . We warp the correspond-

ing two input frames with the content-preserving warp

from Liu et al. [4], and linearly blend the two warped

frames to produce the output image. After rendering all

2n images our 3D light field is complete and the EPIs

show straight lines as we show in Figure 4.

4 Disparity Map

For most of our applications we need a disparity map

for our reference image. We compute this disparity map

using the 3D light fields that we obtain as described in

the previous section. We first construct a score volume

that holds a score for a set of disparity hypotheses at

each pixel, where larger scores indicate higher quality

matches (Section 4.1). We then filter each disparity slice

of the score volume using a structure preserving filter

to increase the robustness of our initial score estimates

(Section 4.2). We assign a disparity to each pixel with

a winner-takes-all strategy over the filtered disparity

hypotheses at each pixel. Finally, we apply a bilateral

median filter to get our output disparity map.

4.1 Score Volume Computation

We construct our score volume using the stabilized im-

ages Ij from the previous section as input. For each

disparity hypothesis from a predetermined set of hy-

potheses, we shift all the images horizontally with re-

spect to the hypothesized disparity. We then compare

the pixels in the shifted images with the reference im-

age Im and compute a score for each pixel. We adopt

the similarity measurement from Kim et al. [7] using

an Epanechnikov kernel. Additionally, we also take into

account the horizontal image gradients.

More precisely, we define the initial score for pixel

(x, y) and disparity hypothesis d as

S(x, y, d) =
∑
j 6=m

K(Ij(xs, y)− Im(x, y))·

K(∇xIj(xs, y)−∇xIm(x, y)),

(6)

where j is the index of the input image, xs = x+ (j −
m)d is the shifted pixel position under disparity d, and

∇x is the horizontal image gradient. The similarity ker-

nel K is the Epanechnikov kernel K(z) = 1−‖z/h‖2 if

‖z/h‖ < 1 and 0 otherwise. We set the threshold h to

h = 9, where pixel values are in the range [0, 255].

Fig. 5 The accumulated score of the red disparity hypoth-
esis is larger than the one of the green one because we find
more pixels with non-zero scores along the red line. On the
other hand, the green hypothesis has fewer but higher non-
zero scores. Our normalization gives preference to the correct
hypothesis in green.

We observe, however, that in regions containing oc-

clusions as in Figure 5 the raw score from Equation (6)

is biased towards the foreground disparity. For the pixel

marked in yellow the correct disparity corresponds to

the green ray, which belongs to the background. Along

this ray, however, we have fewer non-zero scores in the

sum of Equation (6) because of the occlusion by the

foreground in some of the views. Hence the sum of the

scores of the disparity of the foreground, drawn in red,

is higher, although the value of the individual scores in

Equation (6) are smaller. To avoid this effect we include

a normalization step in our approach.

We first define a confidence measure C(x, y), which

captures at each pixel (x, y) the ratio by which the high-

est score outperforms the average score, that is,

C(x, y) =
maxd(S(x, y, d))
1
D

∑
d S(x, y, d)

. (7)

This ratio indicates how unique the maximum score is

with respect to the average score. In an ideal case the

score is non-zero only for a single disparity hypothesis

and the confidence takes on the value D, the number of

disparity hypotheses. The confidence goes to 1 as the

maximum score gets closer to the average.

Situations as in Figure 5 lead to low confidence val-

ues, because the scores of the disparity hypotheses of

the yellow pixel exhibit several peaks instead of a single

one. Therefore, if the confidence is low we divide each

score by its corresponding number of non-zero values

in the sum in Equation (6). This favors disparity hy-

potheses with fewer, but higher scores, and allows us to

more robustly detect the background disparity. If con-

fidence is high there is likely a single peak in the scores

and the normalization is not necessary. It may even be

counterproductive, since it reduces the prominence of

the peak. Hence in this case we normalize all scores for

a pixel by the same factor, which is the number of non-

zero values in the highest score in Equation (6). We

obtained all our results with a threshold of D/4 on the

confidence.
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4.2 Score Volume Filtering

The purpose of the score volume filtering step is to re-

duce the noise in our initial per pixel score estimate de-

scribed above. We apply an edge preserving filter to the

(x, y)-slice of each disparity hypothesis similar as pro-

posed by Rheman et al. [18]. Instead of the guided im-

age filter, however, we use the domain transform filter

(DTF) introduced by Gastal and Oliveira [19], whose

computational complexity is linear in the number of

pixels to be filtered and independent of the filter sup-

port size, similar as for the guided filter. The most at-

tractive property of the DTF for our problem is that

its support adaptively shrinks or expands according to

the image structure. In particular, in highly uniform ar-

eas where disparity estimation is notoriously difficult,

the filter takes on a large support. In regions with rich

structure, in contrast, the filter support shrinks. Intu-

itively, the DTF weights pairs of pixels by their distance

(according to some metric) along a path connecting

them in the image. This is similar to geodesic filter-

ing, and indeed the domain transform approach can be

interpreted as an iterative approximation of geodesic

filtering. Here we focus on our extensions of DTF for

filtering our score volumes. Please see the original pub-

lication [19] for more details.

We first give a simplified explanation of the basic

DTF in 1D. Assume the input is a 1D function I(x) :

R → R. The DTF weight for two neighboring pixels

at locations x and x+ h is defined as g(|ct(x)− ct(x+

h)|), where g is a filter kernel, and ct : R → R is the

domain transform function, which is at the core of the

approach. The main idea is to define ct in a way such

that the absolute value |ct(x)− ct(x+ h)| is related to

a l1 distance in 2D between the two 2D points given

by the pixels and their function values. This l1 distance

is defined as σsh+ |σr(I(x)− I(x+ h))|, where σs and

σr are filter parameters similar to the spatial and range

parameters of the bilateral filter. The key observation

is that if these 2D distances are large, ct “scales up”

the argument |ct(x) − ct(x + h)| to the filter, leading

to a quick fall-off of filter weights, and preserving the

structure in the input. The opposite happens for small

distances. Generalizing to color images with three r, g, b

channels, one can show that the above constraints on

ct lead to the definition

ct(u) =

∫ u

0

1 +
σs
σr

∑
k∈r,g,b

|I ′k(x)|dx, (8)

where I ′k is the derivative of the k-th color channel. In

addition, 2D images can be filtered by iterating over

several 1D passes.

In our application, we filter the disparity hypotheses

scores obtained in the previous section using the color

image of the reference view as a “guide” to define the

domain transform function, which is similar to cross-

bilateral filtering. We observed, however, that we can

improve the quality of our filtered output by includ-

ing the confidence C, Equation (7), from the previous

Section. The intuition for including the confidence in

the DTF is that if we found a clear winner among the

disparity hypotheses at a pixel, meaning we get a high

confidence value, the filter does not need to extend fur-

ther. On the other hand, if we have low confidence in

the winning disparity hypothesis, the filter should ex-

pand until we accumulated enough evidence.

We include the confidence into the DTF as an addi-

tional channel in the guide, forcing the filter support to

stop where we have enough confidence. We achieve this

by plugging the logarithm of Equation (7) into Equa-

tion (8),

ct(u) =

∫ u

0

1 +
σs
σr

∑
k∈{r,g,b}

|I ′k(x)|+ σs
σc

log(C(x)) dx.

(9)

Due to the non-linearity of our confidence estimate,

we use log(C) as an upper bound on the confidence

of the filtered score volume that will be accumulated

by the filter. We can easily show that using the loga-

rithm guarantees that the filter support never accumu-

lates more than the user specified confidence σc. We use

σr = 178.5, set σs to one fifth of the image width, and

σc = log(D) to produce all our results.

After cost volume filtering, we select the disparity

with the highest score in a winner-takes-all manner. We

finally apply a bilateral median filter to remove remain-

ing spike noise within a 9 × 9 block. To compute this

weighted median, we calculate its bilateral weights [20]

according to the corresponding colors in the reference

image. Then a histogram is created using the computed

weights as accumulation factor of the neighboring dis-

parities. The median value of this histogram is assigned

to the pixel’s disparity. We compare our approach to

two other recent methods [21,7] in Figure 6.

5 Applications

In this section we present several applications of our

reconstructed 3D light fields, most of them relying on

disparity maps constructed as described above.
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(a) Reference Image (b) Score Volume Slice (c) Unnormalized (d) Normalized

(e) Our confidence map (f) Wanner et al. [21] (g) Kim et al. [7] (h) Ours

Fig. 6 Visualization of the disparity map creation: (a) the reference view, (b) parts of four slices of the score volume S for
disparity hypothesis -1.5, 0, 1.5 and 3 (from left to right), (c) the disparity with maximum score in S, (d) the disparity with
the normalized scores, (e) the confidence map, (f) final result of [21], (g) final result of [7], (h) our final disparity map.

5.1 Refocusing using Synthetic Apertures

Shallow depth of field effects, as often used in profes-

sional portrait photography for example, are beyond

the reach of devices like smart phones because of size re-

strictions on the optical design. Light fields acquired by

translating a camera, however, make it possible to sim-

ulate synthetic apertures whose size is only limited by

the range of camera translations. Light fields also facil-

itate digital refocusing after the fact, that is, changing

the focal depth after image acquisition. We exploit our

3D light fields to achieve refocusing using potentially

large synthetic apertures.

Given a 4D light field, it is straightforward to sim-

ulate a synthetic aperture by simply filtering over its

two angular dimensions, where the filter represents the

shape and extent of the desired aperture. The main

challenge we need to overcome is that in our 3D light

fields we only have one angular dimension, restricting

synthetic apertures to horizontal 1D slits. We solve this

problem by observing that we can model any separable

2D aperture as a superposition of vertical 1D aper-

tures over the 1D angular domain of our 3D light fields.

Hence, we use a two step procedure to obtain synthetic

2D apertures. First, for each view in our 3D light field

we approximate the effect of the vertical 1D aperture.

In the second step, we filter these processed views over

the angular domain of the light field.

We leverage our disparity maps to compute the ver-

tical 1D synthetic apertures using a depth-aware blur.

We assume a two layer model consisting of a foreground

and a background layer at each pixel, where the fore-

ground contains all neighboring pixel closer to the cam-

era, and the background all other pixels. We compute

the colors for both layers separately, and blend them us-

ing alpha compositing. We obtain the depth-aware blur

by splatting each foreground pixel to its vertical neigh-

bors, where the splat size is given by the difference of

the pixel’s disparity to the disparity corresponding to

the desired focal distance, and we use a 1D Gaussian

splat kernel. More precisely, we splat the color of pixel

q to a vertical neighbor p using the Gaussian weight

G(p,q, σ) =
1√

2πσ2
e−
‖p−q‖2

2σ2 , (10)

where the variance

σq =
a|d(q)− df |+ 1√

2 log(255)
(11)

is defined by the difference of the disparity d(q) of pixel

q to the disparity df of the object in focus and the user

given aperture size a.

We compute the foreground color F (p) of a pixel

p by accumulating the splat contributions of all fore-

ground pixels q, that is, pixels with larger disparities

than p,

F (p) =

∑
{q|d(q)>d(p)}G(p,q, σq)I(q)

W (p)
, (12)

where we normalize by the sum of the weights

W (p) =
∑

{q|d(q)>d(p)}

G(p,q, σq). (13)
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(a) Reference Image (b) Vertical 1D Aperture (c) Foreground in Focus (d) Background in Focus

Fig. 7 We create our synthetic aperture in two steps. First we enlarge the aperture vertically only (b). This we do for several
views along the horizontal camera path. Summing them up extends the aperture horizontally (c). To get (d) we apply the
same procedure by focusing on the background.

Note that the normalization weight W (p) can be con-

sidered as an opacity value. We similarly compute the

background color using all background pixels, that is,

pixels with the same or smaller disparities than p. Note

that here we calculate the filter size according to the

disparity of p for all background pixels. We do this be-

cause p itself belongs to the background, and it should

not be splatted with colors from pixels which are behind

it when p itself is in focus. Then,

B(p) =

∑
{q|d(q)≤d(p)}G(q,p, σp)I(q)∑
{q|d(q)≤d(p)}G(q,p, σp)

. (14)

Finally, we composite the foreground and background

using alpha blending with α = min(1,W (p)),

V (p) = αF (p) + (1− α)B(p), (15)

where we clamp foreground coverage to one. We show

an example in Figure 7(b).

Note that to apply the depth-aware blur to each

light field view, we need a disparity map for each one.

Instead of recomputing disparity maps for each view,

we simply propagate the disparities from the reference

image by following them to the other views. Hence, we

propagate the disparity d of pixel (x, y) on the reference

view m to pixel (x + d(i −m), y) on the i-th disparity

map. For pixels that receive several disparity values we

keep the largest one, since this is the one belonging to

the frontmost object. On the other hand, gaps will ap-

pear in background regions that were occluded in the

reference view. We fill these holes with the lower dis-

parity of its left respectively right border.

Once we computed all the vertically blurred views

Vi, we shift them according to the in-focus disparity df
and compute a weighted sum

IsynthApp(p) =
∑
i

G(i,m, σ)Vi(ps) (16)

as the output image, where ps = (xs, y) with xs = x+

(i−m)df . We use again the Gaussian weightsG(i,m, σ),

where i is the index of the view, m is the index of the

reference image and σ = (a+ 1)/
√

2 log(255).

5.2 Further Applications

In this section we illustrate the usefulness of our pro-

cessing pipeline by discussing further computational pho-

tography applications.

Foreground Removal. We can automatically remove thin

foreground obstacles by exploiting our light field data

and disparity map. This is useful to remove unwanted

objects that may spoil a shot, as illustrated in Figure 8.

Our approach is inspired by previous work that exploits

light fields to “see through” foreground objects that

partially occlude the scene behind [13]. The main idea

is that digitally refocusing on a background layer using

a very large synthetic aperture will make the foreground

almost transparent. Since we have a disparity map at

our disposal in addition to the light field, we are even

able to completely disregard foreground objects based

on their disparity when digitally refocusing on the scene

behind. We simply mask out the disparity map using a

threshold given by the disparity of the obstacle. Then

we refocus the light field on the background and inte-

grate only where the mask is non-zero. We apply the

same disparity propagation to the non-central light field

views as in Section 5.1.

Segmentation and Alpha Matting. We can use our dis-

parity map to segment foreground objects by threshold-

ing the disparities. The user sets the threshold simply

by selecting the desired object. In addition, we obtain

an alpha matte by filtering the resulting binary segmen-

tation mask with the guided image filter as proposed

by He et al. [8]. The filtering step produces a “guided

feathering” effect where alpha values preserve detailed

image structures while smoothly blending between fore-

ground and background. Although algorithms for alpha

matting using light fields have been proposed [15], we

found that these approaches are less robust and more

sensitive to parameter settings and scene characteris-

tics.

We can also use the resulting segmentation and al-

pha matte to generate a selective gray scale effect where
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(a) Reference Image (b) Synthetic Aperture (c) Large Synthetic Aperture (d) Infinite Aperture

Fig. 8 We show the user selected reference image in (a). In (b) and (c) we applied our synthetic aperture focusing on the
background with aperture size 5 and 10, respectively. In (d) we show the result of our ”infinite aperture” by removing the
fence.

Fig. 9 An application of our computed alpha matte: For the
reference image (top left) an alpha matte is generated for the
foreground (top right). The object is inserted into the scene
and blended with the foreground (bottom).

(a) Reference Image (b) Grayscale

Fig. 10 An application of image segmentation: pixels with a
disparity value below a threshold are converted to gray scale.

the selected region stays colorful while we convert the

rest of the scene to a gray scale image, as shown in

Figure 10. Leveraging the disparity map, we can fur-

ther provide functionality to insert new objects in the

scene while respecting occlusions and performing alpha

compositing with the foreground and background.

Multiview Autostereo Output. With the method from

Section 3.4 we are able to render views from any point

on the camera baseline. Hence it is straightforward to

produce the appropriate views for autostereoscopic dis-

plays or lenticular prints. We adjust the zero-disparity

plane to focus on desired scene elements by horizontally

shifting the created views, where we read the required

shift directly from the disparity map.

6 Mobile Application

To demonstrate the feasibility of a mobile app targeting

advanced computational photography we implemented

digital refocusing with synthetic apertures on iOS. The

app lets the user record short movies and then processes

the video frames as explained in Section 3. The user can

then refocus the image as described in Section 5.1 using

a touch gesture.

The iOS implementation shares most of the under-

lying source code with its desktop sibling, which keeps

the porting effort at a minimum. To improve perfor-

mance on the mobile device we vectorized the math-

libraries using ARM NEON, perform more complex op-

erations asynchronously to avoid freezing the user inter-

face, and use an OpenGL ES 2 based off-screen renderer

to increase the performance of our image-based warper

(Section 3.4). Last but not least, we tuned all quality

settings for speed to minimize the runtime complexity

when computing synthetic apertures aimed at mobile

device screen resolutions. This includes the number of

tracked features1, the number of rendered views (10),

and the input frame resolution (720p).

We benchmarked our prototype on two devices, an

iPhone 5 powered by Apple’s ARM-v7s A6, and an iPad

Air powered by Apple’s ARM-v8 64bit A7. The results

are shown in Table 1. Apparently, preprocessing the

input material is the most time consuming part, notably

feature detection, whereas refocusing is relatively quick.

It is thus advisable to use as few frames as possible, and

then to store the preprocessed data for later reuse. This

enables us to provide a similar experience as with the

Lytro light field picture files.

1 Using cv::goodFeaturesToTrack()
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iPhone 5
Movie Preprocess Disparity Warp Refocus
Fence 17.9s 44.7s 4.3s 8.8s
Rava 30.0s 41.4s 3.6s 5.7s
Yasmin 11.4s 41.4 4.1s 12.6s

iPad Air
Preprocess Disparity Warp Refocus

Fence 8.8s 18.3 2.2s 3.8s
Rava 14.1s 16.1 1.6s 2.5s
Yasmin 5.9s 16.5 1.8s 6.1s

Table 1 Results for the 2D synthetic aperture as explained
in Section 5.1.

7 Conclusions and Future Work

We presented a method for hand-held 3D light field pho-

tography and described several computational photog-

raphy applications enabled by our framework. The main

advantage of our approach over previous techniques for

capturing light fields using hand held devices is that it

requires only a simple and short user interaction, mak-

ing it practical for casual users. Our work hinges on a

novel technique for spatio-temporal resampling of im-

age sequences from approximately linear camera paths

into regularly sampled 3D light fields. We also devel-

oped a novel disparity estimation technique leading to

state-of-the-art results on standard datasets. Finally,

we introduced a digital refocusing approach using syn-

thetic apertures that leverages our light field data and

disparity maps, and several other applications. We be-

lieve our approach opens exciting avenues for further

computational photography applications on mobile de-

vices. However, more low-level performance optimiza-

tion is needed to provide a desirable level of interactiv-

ity on current devices.
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