
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2012)
P. Kry and J. Lee (Editors)

Learning Motion Controllers with Adaptive Depth Perception

Wan-Yen Lo†1,2, Claude Knaus2, and Matthias Zwicker1,2

1University of California, San Diego 2Universität Bern

Abstract

We present a novel approach to real-time character animation that allows a character to move autonomously
based on vision input. By allowing the character to “see” the environment directly using depth perception, we can
skip the manual design phase of parameterizing the state space in a reinforcement learning framework. In previous
work, this is done manually since finding a minimal set of parameters for describing a character’s environment is
crucial for efficient learning. Learning from raw vision input, however, suffers from the “curse of dimensionality”,
which we avoid by introducing a hierarchical state model and a novel regression algorithm. We demonstrate that
our controllers allow a character to navigate and survive in environments containing arbitrarily shaped obstacles,
which is hard to achieve with existing reinforcement learning frameworks.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

1. Introduction

Reinforcement Learning (RL) has recently attracted consid-
erable attention in character animation. RL algorithms allow
the character to learn optimal behaviors in a preprocessing
step by interacting with the environment. At run-time, the
character can make (near) optimal decisions in real-time.

Unfortunately, defining suitable state spaces for RL al-
gorithms is difficult. On one hand, using general but high-
dimensional state spaces is impractical, since the learning
time and memory requirements increase superlinearly with
the number of state variables. On the other hand, too spe-
cific state representations have disadvantages: a controller
learned to navigate through round obstacles that are param-
eterized by radii, can be confused with sharp obstacles, as
they are not well described by radii. Hence, controllers have
to be manually parametrized for each task and environment.
This process is tedious, and a small change in the state rep-
resentation requires the learning process to be repeated.

We propose a general approach that avoids the need of
any ad-hoc parametrization of the environment. With our ap-
proach, low-dimensional state representations can be built

† walo@ucsd.edu

automatically for learning intuitive behaviors efficiently. In-
stead of letting the character read a manually crafted descrip-
tion of the environment, we allow the character to perceive
depth directly. Since the large amount of visual information
is intractable for learning, we use a hierarchical represen-
tation of the visual percepts. We build a hierarchy by sub-
sampling the input percept, based on the observation that
high resolution vision is not always required. When objects
are far, blurry vision is enough to make a good decision;
when objects are close, clear vision is needed. Also, in gen-
eral, objects in front of the character require clearer vision
than those in other directions. We do not, however, explicitly
specify a level of detail for any given situation. Instead, we
allow the level of detail to be selected automatically during
learning, and found that the learned controllers confirm this
intuition. The main technical contribution of our approach is
to integrate the hierarchical state model with an efficient RL
algorithm, and to allow the depth percepts to be interpreted
adaptively and automatically in the learning process.

First of all we show that the performance of previous
approaches based on parameterizing each object explicitly
drops quickly as the environment gets more cluttered. In
contrast, learning with depth perception is relatively more
robust. We further show that complicated situations require
high resolution vision, but using raw vision input suffers
from the curse of dimensionality. Our hierarchical state rep-

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

resentation, however, allows a controller to be learned effi-
ciently by adjusting the resolution adaptively. We also show
how a learned controller is flexible enough to handle ob-
jects of novel shapes. Finally, we use a game-like scenario to
highlight the advantage of RL approaches over path search-
ing techniques in real-time applications.

In summary, we make the following contributions:

• A hierarchical state model for reinforcement learning to
replace a single state definition of fixed dimensionality.
• The use of a hierarchical state model in character anima-

tion to allow characters to perceive depth. Our approach
avoids the need to carefully design ad-hoc parameteriza-
tions of environments based on their specific properties.
• An efficient reinforcement learning algorithm that inte-

grates our hierarchical state model. To this end, we present
a regression algorithm with automatic resolution adapta-
tion based on scene complexity.

2. Related Work

Motion graphs and related approaches are commonly used
to represent plausible transitions between motion seg-
ments [KGP02, SO06, HG07, BCvdPP08]. By traversing the
graph, natural-looking and complex motions can be synthe-
sized. Most systems allow users to specify the desired mo-
tion, and formulate the input constraints as a cost function.
The desired motion can then be solved by searching a path
through the graph that minimizes the total cost [KGP02,
AF02,LK05,LK06,SH07,LZ10]. However, the search com-
plexity for an optimal or near-optimal solution is exponen-
tial to the connectivity of the graph and the length of mo-
tion. Applying these techniques for real-time applications
is therefore challenging. Other approaches use probabilis-
tic roadmaps, rapidly-exploring random tree, or limited-
horizon search, trading optimality for efficiency [LK00,
KL00, LCR∗02, CLS03, CKHL11].

Reinforcement learning, on the other hand, allows pre-
computing optimal actions for every situation [KLM96,
SB98]. The objectives and constraints are represented as a
reward function, and RL algorithms aim at finding a map-
ping from states to actions that maximizes the rewards ac-
cumulated over time. Several works have demonstrated ef-
fective use of RL in character animation [LL04, IAF05,
TLP07, MP07, LZ08]. To increase the applicability of RL
in character animation, Lee et al. [LLP09] reduce the size
of the action space by presenting a motion selection algo-
rithm; Lee and Popović [LP10] allows the reward function
to be inferred from examples provided by the user; Lee et
al. [LWB∗10] define a continuous action space by introduc-
ing motion fields in order to make more responsive con-
trollers. Wampler et al. [WAH∗10] extend the RL framework
with game theory to generate controllers in two-player ad-
versarial games. Levine et al. [LLKP11] combines RL with
heuristic search to enable space-time planning in highly dy-
namic environments.

In robotics and artificial intelligence, vision-based sens-
ing has been combined with local path planning [MCKK05,
CTS∗09] and reinforcement learning [MSN05, JP05, JP07],
allowing the agent to navigate toward the goal while avoid-
ing obstacles. Michels et al. [MSN05] define a state by divid-
ing the image into a set of directions. Each direction is a ver-
tical stripe encoding the log distance to the nearest obstacle.
However, the number of stripes is pre-defined and does not
adapt to scene complexity. On the other hand, Jodogne and
Piater [JP07] argue that most approaches in RL rely on pre-
processing the visual input to extract task-relevant informa-
tion. To avoid task specific coding, they use an automatic im-
age classifier to partition the visual space adaptively. How-
ever, they use a fixed map to train the classifier and any
change in the map requires the training to be repeated.

In computer graphics, synthetic vision are used for steer-
ing virtual humans [NRTMT95, KL99, PO03, OPOD10].
However, without pre-planning, computing the solution at
run-time leads to a trade-off between optimality and effi-
ciency. In applied perception, Sprague et al. [SBR07] intro-
duce a more elaborate visual model by allowing the char-
acter to control the gaze, and apply RL algorithms to build
mappings from visual percepts to body movements. How-
ever, their controller can only take into account one near-
est obstacle at a time, while our perception model does not
limit the number of objects in the scene. Our state defini-
tion is similar to the one used by Michels et al. [MSN05],
but inspired by Jodogne and Piater’s work [JP05], we subdi-
vide the depth percepts adaptively to adjust the level of dis-
cretization dynamically and automatically according to the
complexity of the scene. Applying our state model to RL,
we can achieve near-optimal character control in real-time.

3. Learning Motion Controllers

In this section, we review relevant RL background and ex-
plain our choice of learning algorithms. The motion control
problem is formulated as a Markov decision process (MDP)
(S,A,T,R) with discrete-time dynamics:

• A is the action space, composed of all motion fragments.
• S is the state space, and generally a state st ∈ S is de-

fined as a vector (at−1,θt), where t is a discrete time
step, at−1 ∈ A denotes the currently played motion, and
θt ∈Rn is a vector of task parameters describing the char-
acter’s current situation in the environment.

• T : S × A × S → R is the transition model, where
T (s,a,s′) denotes the probability of reaching state s′

when action a is taken in state s.
• R : S × A → R is the reward function, defined as

R(st ,at) =Rs(st)+Rt(at−1,at). The state reward Rs mea-
sures how well the character respects user objectives and
environmental constraints. The transition cost Rt ensures
smooth transitions between motions.

A solution to the MDP is a policy π : S → A, and the
quality of a policy is measured by the value function V π :

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

S → R,

V π(s) = Eπ

[
∞
∑
t=0

γ
tR(st ,at)

∣∣∣s0 = s

]
(1)

= R(s,π(s))+ γ∑
s′

T
(
s,π(s),s′

)
V π(s′), (2)

where at = π(st) and γ accounts for future uncertainty. There
exists at least one optimal policy π

∗ that yields the optimal
value for every state [SB98]. Given the optimal value func-
tion V∗ , an optimal policy can be defined as,

π
∗(s) = argmax

a

(
R(s,a)+ γ∑

s′
T (s,a,s′)V∗(s′)

)
. (3)

If the state and action spaces are finite, and the transition
model and reward function are known, the optimal solution
to the MDP can be found with dynamic programming al-
gorithms, such as value iteration or policy iteration. In our
case, however, the state space is large and continuous while
the transition model is unknown.

Therefore, we can only approximate the optimal value
function to obtain a near-optimal policy. To learn motion
controllers, Lo and Zwicker [LZ08] and Lee et al. [LLP09]
propose to use regression trees, where each leaf node de-
termines a constant approximation. A regression tree starts
with the whole state space as a root node, and is recursively
refined until it provides enough representation power. Since
this adaptive refining process has proven effective to solve
high dimensional problems, we also use regression trees as
our approximation architecture. More specifically, we adopt
the Extra-trees algorithm [GEW06] to build an ensemble of
randomized trees. In order to integrate our hierarchical state
representation into the existing learning framework, we fur-
ther propose a modification to the original Extra-trees algo-
rithm, as detailed in Section 4.3.

Since the transition model is unknown in our framework,
instead of the optimal value function, we approximate the
optimal action-value function,

Qπ(s,a) = Eπ

[
∞
∑
t=0

γ
tR(st ,at)

∣∣∣s0 = s,a0 = a

]
(4)

= R(s,a)+ γ∑
s′

T (s,a,s′)V π(s′), (5)

Given the optimal action-value function Q∗, an optimal pol-
icy can be derived as

π
∗(s) = argmax

a
Q∗(s,a). (6)

Equation 6 is favorable for decision making, especially when
performing one-step look-ahead is expensive or the transi-
tion model is unknown. In our work, we approximate Q∗

using the fitted Q iteration algorithm [EGW05], which has
been explored in previous work [LZ08, LWB∗10]. The al-
gorithm takes as input an approximation architecture (Extra-
trees in our case), and a sequence of the character’s inter-

(a) Overhead view

(b) First person view

Figure 1: Comparison of perception models using overhead
view (a) and first person view (b). The blue regions denote
obstacles while the gray regions are their representations
in the perception model. In this example, the overhead view
classifies the two different environments as the same, while
the first person view successfully discriminates them.

actions with the environment. The algorithm iteratively up-
dates the action-value function and uses the updated policy
to generate new sequences of interactions. We present the
algorithm in Appendix A for completeness.

4. Adaptive Depth Perception

In Section 4.1, we first explain how environments are param-
eterized in previous RL frameworks, and then propose our
approach based on visual percepts that does not require ad-
hoc parameterizations of different environments. Learning
directly from the visual percepts, however, suffers from the
curse of dimensionality. To overcome the problem, we intro-
duce a hierarchical state model in Section 4.2, and present
a novel regression algorithm to allow learning motion con-
trollers with adaptive depth perception in Section 4.3.

4.1. State Representation

Previous works show that finding a state representation
for efficient learning remains challenging. Most state rep-
resentations are tailored for each specific task. Lee and
Popović [LP10] demonstrate motion controllers on environ-
ments with varying number and shapes of obstacles, but they
assume the environments are fixed. For every change in the
environment, a new controller must be learned. To support
dynamic environments, many previous works parameterize
each object explicitly [TLP07, LZ08, LLP09, LLKP11], and
typically the task parameters (Section 3) are defined as

θ = (x1,y1,s1, . . . ,xm,ym,sm), (7)

where m refers to the number of objects, and (xi,yi) and si
denote the relative position and shape description of the ith

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

d1
1 d2

2

d1
2

d3
4 d4

4

d1
4d2

4

(a) (b) (c)

Figure 2: Visualization of our hierarchical state model. (a)
When n = 1, a state indicates the distance to the closest ob-
ject in the scene. (b) When n = 2, a state indicates the dis-
tances to the closest objects in the front and back. (c) When
n = 4, a state describes the shortest distances to the objects
in four directions.

object. The value of m is predefined, yet allowing more ob-
jects makes the learning problem harder.

A common solution is to consider only a few closest ob-
jects in the environment, but there may be more than m ob-
jects that are equally close to the character. Unable to per-
ceive its complete situation, the character may easily make
a fatal decision. In addition, the descriptive power of shape
parameter si is usually limited to avoid high dimensional-
ity, which explains the popular use of cylinders in previous
work. Finally, a controller learned with one shape descrip-
tion cannot be easily generalized to novel shapes.

A natural way to resolve this complexity is to let the char-
acter “see” the environment directly, by defining a state with
the character’s vision. Some previous work use an over-
head camera to model the character’s perception [IAF05,
MCKK05]. However, we found that by rendering the scene
from the first person view [KL99, MSN05], we achieve bet-
ter learning results, because a more descriptive state can be
defined with fewer parameters, as shown in Figure 1. More
specifically, we capture n depth values from the character’s
panoramic field of view, and store for each vertical stripe i
the log distance di to the closest object. Therefore, we define
the task parameters in a state as

θ = (d1, . . . ,dn). (8)

However, it is difficult to use this representation directly in
existing RL frameworks, since the resolution n needs to be
predefined. If n is too small, the state representation is not
descriptive enough for the learning algorithms to converge.
If n is too large, the problem is cursed by dimensionality.
Therefore, we propose a hierarchical state model and a novel
regression algorithm to allow the use of depth perception in
RL frameworks.

4.2. Hierarchical State Model

We propose a novel approach to adjust the dimensionality
of the perception automatically and adaptively in the learn-
ing process. Our approach is based on the observation that
high resolution vision is not always required, but sometimes

(a) Uniform grid (b) Adaptive regression (c) Hierarchical
adaptive regression

Figure 3: The depth perception space discretized with (a)
uniform grid, (b) adaptive regression, and (c) hierarchical
adaptive regression. The resolution is fixed for (a) and (b),
shown by the black angular dividers. But with adaptive re-
gression (b), each dimension is discretized adaptively, shown
as red radial dividers. With our hierarchical regression al-
gorithm, the resolution can be adaptively adjusted and each
dimension can also be adaptively discretized.

low resolution vision is enough for making good decisions.
Hence, we build a hierarchy by sub-sampling the input per-
cept, and reformulate the task parameters using a hierarchi-
cal representation

θ = (dn,d
n
2 ,d

n
4 , . . . ,d1), (9)

where n denotes the finest resolution of the character’s per-
ception, and we let n to be a power of 2 to simplify the defi-
nition. The vector di is defined as

di = (di
1,d

i
2,d

i
3, . . . ,d

i
i), i = 1,2,4, . . . ,n, (10)

where i represents the level of sub-sampled vision, and di
j

corresponds to a non-negative depth value. The perception
with the highest resolution is directly obtained from the cam-
era mounted on the character, and for other resolutions the
depth values are computed as

di
j = min

(
d2i

2 j,d
2i
2 j−1

)
. (11)

These definitions are visualized in Figure 2.

4.3. Adaptive Learning

In this section, we introduce our hierarchical regression al-
gorithm, which is based on the Extra-trees algorithm but al-
lows the state hierarchy to be automatically adapted to the
scene complexity. Compared to the use of a uniform grid
(Figure 3a), the original Extra-trees algorithm adaptively
discretizes the state space in each dimension (angular bin
in Figure 3b). This allows some parts of the state space to be
discretized more finely than others, providing the character
with clearer vision when the object is up front. However, the
original Extra-trees algorithm only works with a state rep-
resentation of fixed dimensionality, such as Equation 8. It
does not allow the number of dimensions n to be adjusted
adaptively.

In order to adaptively discretize the perception space in
both radial and angular directions, as shown in Figure 3c, we

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

Algorithm 1 Hierarchical Extra-Trees Algorithm

Input: T ′ = {(xt = (st ,at),yt)} and D = {(i, j)}

1: procedure SPLITNODE(T ′,D)
2: for all (i, j) in D do
3: Find a random split value ci, j
4: Compute the relative variance reduction ri, j
5: end for
6: (a,b)← argmini, j ri, j
7: if ra,b < εs then
8: D′←{(2i,2 j),(2i,2 j−1),∀(i, j) ∈ D}
9: Repeat 1-6 using D′ to get (a′,b′)

10: if ra′,b′ > ra,b then
11: (p,q)← (a′

2 ,b
b′
2 c)

12: D←D\{(p,q)}
13: D←D∪{(2p,2q),(2p,2q+1)}
14: (a,b)← (a′,b′)
15: end if
16: end if
17: T ′L ←{(xt ,yt)|st .da

b < ca,b}
18: T ′R ←{(xt ,yt)|st .da

b ≥ ca,b}
19: SplitNode(T ′L ,D)
20: SplitNode(T ′R ,D)
21: end procedure

present a regression algorithm that works with the hierarchi-
cal state model introduced in Section 4.2. Our Hierarchical
Extra-trees algorithm maintains the original framework of it-
eratively selecting a node split that leads to highest relative
variance reduction, while allowing the set of dimensions be
adjusted in a hierarchical way. In Algorithm 1, Line 7–16 is
our modification, while the rest is from the original Extra-
trees algorithm.

We start this recursive regression algorithm using the low-
est resolution of depth perception, so the input D equals to
{(1,1)}, that is, only the value of d1

1 is considered in θ. Ini-
tially, the entire state space is treated as a root node, so the
input T ′ is obtained from all sampled transitions (using Line
6–7 in Algorithm 2). To split a node, a potential split position
is generated randomly for each dimension inD and each po-
tential split is evaluated by computing the relative variance
reduction [GEW06]. The split with the highest variance re-
duction is selected (Line 6) to divide T ′ into two subsets
(Line 17–18), which are recursively split to produce a tree
(Line 19–20) .

In the first few recursions, blurry or low-dimensional vi-
sion is sufficient for discriminating between favorable and
unfavorable states. However, after the character has learned
enough using the blurry vision, further splitting along any
particular input dimension yields no satisfying variance re-
duction (Line 7, where εs is a pre-defined threshold). Since
the current set of dimensions cannot discriminate more com-
plex situations, our adaptive strategy is to increase the reso-

refine & split

split

split

Figure 4: Illustration of building a regression tree with our
hierarchical regression algorithm. “Split” (shown in red)
is what the original Extra-trees algorithm does, “refine”
(shown in green) means refinement of our hierarchical state
model. The initial state consists of one-dimensional percep-
tion with lowest resolution. First we find a cut along the di-
mension and split the root node into a left and right subtree.
The right subtree represents those states where even the clos-
est object is distant from the character. When all the objects
are far, blurred vision is enough, so no state refinement is
required. If the character is in a state represented by the left
subtree, there is at least one close object, and the character
requires clearer vision to judge the situation. Hence, only af-
ter the resolution of the perception is increased can we find
a cut to sufficiently reduce the variance.

lution of the perception, by refining the input set of dimen-
sions D. For each dimension in use, we check if we can get
better variance reduction by replacing it with its two finer-
level dimensions (Line 8–9), and we replace the one with the
best improvement (Line 10–15). The subtrees from this node
will use this new set of dimensions (Line 19–20) until it is
not descriptive enough and refined again. Hence, each node
in the regression tree might use a different set of dimensions
for splitting the state space, as illustrated in Figure 4. The
adaptive refinement stops when the finest resolution level is
reached.

With the original Extra-trees algorithm, the use of high
resolution input is prohibitive, as running Line 2–5 in Algo-
rithm 1 is computationally intensive. With our hierarchical
regression algorithm, however, the dimensionality is adap-
tively increased, so we can gain considerable speedup.

5. Results

We collect a few minutes of motion capture data of a person
walking around, and organize the data by building a well-
connected motion graph [ZS08], which contains 2173 nodes
and 2276 links. We further compress the graph by collapsing
the links with only one successor and one predecessor. The

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

final graph contains 25 nodes and 128 links. Each graph link
corresponds to an action in the MDP.

To simulate the character’s vision, we place four cameras
on the body, each with 90 degrees field of view, covering
the panoramic vision. We use object false-coloring for ren-
dering different types of objects, e.g., goals and obstacles.
Instead of introducing extra dimensions in the state defini-
tion to store the types, we use a set of dimensions for each
type of object separately.

The remaining section is organized as follows. We first
explain the experiment setup in Section 5.1. We demonstrate
the effectiveness of using the depth perception model in 5.2.
We further show in Section 5.3 that by adjusting the percep-
tion adaptively, the learning efficiency is significantly im-
proved. We analyze the optimality and run-time performance
of the result controllers in Section 5.4 and Section 5.5 re-
spectively. In Section 5.6, we show how a learned controller
is flexible enough to handle objects of novel shapes. Finally,
we use a game-like scenario in Section 5.7 to highlight the
advantage of applying reinforcement learning in real-time
applications.

5.1. Experiment Setup

In Section 5.2–5.6, we make comparisons by learning nav-
igation controllers. The objective of a navigation controller
is to guide the character to a goal without colliding with any
obstacle in the scene. Our state reward function is defined as:
+100 for stopping in a goal region, −200 for collision, and
−1 for each second elapsed. When acquiring the character’s
perception, we render the goal objects in a separate pass so
the character can always see the goal, but the obstacles will
occlude each other. All the comparisons are made on a PC
with a Xeon 2.50GHz dual 4-core CPU and 8GB memory,
using the same learning framework:

• In the fitted Q iteration algorithm (Algorithm 2), we re-
build regression trees using the (hierarchical) Extra-trees
algorithm in each of the first 50 iterations; after 50 iter-
ations, we freeze the tree structure, stop generating new
training samples, and let the algorithm run until conver-
gence.
• In each iteration, we generate N trajectories of training

samples. Each trajectory starts at a random position and
finishes at a goal or after exceeding 100 time steps.
• We build 10 regression trees to approximate an action-

value function, that is, having 128 actions in our MDP, we
produce 1280 regression trees for a motion controller.

To assess the quality of a motion controller, we run simu-
lations with the controller to compute the average expected
return. We start each simulation by placing the character ran-
domly in a random environment, and run the simulation by
using the controller to navigate the character. The expected
return of a simulation is computed as ∑

1000
t=0 γ

tR(st ,at). In the
end, we average the expected returns from all simulations to

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
#Obstacles

-200

-150

-100

-50

0

50

Sc
or

e

Explicit Parameterization
Depth perception

1 2 3 4 5 6
#Obstacles

20

40

60

80

100

120

Ti
m

e
(m

in
ut

es
)

Explicit Parameterization
Depth perception

Figure 5: Performance comparison between a controller
learned with explicit parameterization of the environment
(gray) and that learned with depth perception (blue).

obtain the score of a controller. The higher the score is, the
better the controller performs. To make fair comparisons, we
fix a set of 10,000 random environments and initial states, so
the average scores of different controllers are directly com-
parable. Finally, since the learning algorithm is randomized,
we repeat the learning process three times for each experi-
ment and average the scores and running time.

5.2. Depth Perception

We first compare the conventional state representation us-
ing explicit parameterization with our novel approach based
on depth perception. The environment contains a goal object
and m obstacles. All objects are cylinders with variable radii.
In this comparison, the task parameters θ

e (explicit parame-
terization) and θ

d (depth perception) are defined respectively
as

θ
e = (x1,y1,a1, . . . ,xm+1,ym+1,am+1)

θ
d = (dg

1 ,d
g
2 ,d

g
3 ,d

g
4 ,d

o
1 ,d

o
2 ,d

o
3 ,d

o
4),

where (xi,yi) and ai = tan−1 (ri/
√

x2
i + y2

i) denote the rel-
ative position and viewing angle of the ith object whose ra-
dius is ri; (d

g
1 ,d

g
2 ,d

g
3 ,d

g
4) denote the character’s depth per-

ception of the goal in four directions; (do
1 ,d

o
2 ,d

o
3 ,d

o
4) are de-

fined similarly for the obstacles. In this comparison, N = 200
trajectories are generated in each iteration of the learning al-
gorithm to expand the training set.

We compare the two representations with increasing num-
ber of obstacles m, and the results are presented in Figure 5.
When there is only one obstacle in the scene, the results are
comparable both in score and learning time. However, as the
number of obstacles increases, so dose the dimensionality
of θ

e, and the performance of the explicit parameterization
declines significantly. Moreover, with explicit parameteriza-
tion, after m increases to four, the score drops below zero,
meaning that the character often takes unnecessary detours
or collides with obstacles. On the contrary, the depth per-
ception model is more robust with respect to the scene com-
plexity. The results show that even a perception model with
low resolution (n = 4 in Equation 8) can lead to a better con-
troller in a shorter amount of time.

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

1 to 4 obstacles 6 to 9 obstacles 11 to 14 obstacles

50 100 150 200
N (#Trajectories / Iteration)

0

10

20

30

40

Sc
or

e

non-adaptive, n = 64
non-adaptive, n = 32
non-adaptive, n = 16
non-adaptive, n = 8
non-adaptive, n = 4
adaptive

50 100 150 200
N (#Trajectories / Iteration)

0

20

40

60

80

100

120

140

Ti
m

e
(m

in
ut

es
)

100 200 300 400
N (#Trajectories / Iteration)

-10

0

10

20

30

Sc
or

e

100 200 300 400
N (#Trajectories / Iteration)

0

1

2

3

4

5

6

7
Ti

m
e

(h
ou

rs
)

200 300 400 500
N (#Trajectories / Iteration)

-20

-10

0

Sc
or

e

200 300 400 500
N (#Trajectories / Iteration)

1
2
3
4
5
6
7
8
9

10
11

Ti
m

e
(h

ou
rs

)

Figure 6: Performance comparisons among non-adaptive depth perception, with n fixed to 4, 8, 16, 32, and 64 plotted in solid
lines, and adaptive depth perception, plotted in dotted lines. We make comparisons using three different scene densities, and we
consistently obtain improved learning performance with our approach.

5.3. Adaptive Depth Perception

In this section, we analyze how the learning performance
scales with the resolution of perception. First of all, we ex-
periment with sparse environments containing one to four
cylindrical obstacles whose positions and radii are generated
randomly. We compare resolutions of n = 4,8,16,32, and
64 in Equation 8 (when n = 4, the state representation is the
same as θ

d in Section 5.2), and plot the scores and learning
time with respect to N, the number of trajectories sampled
in each iteration. The plots in Figure 6 show that the first
two increases of the resolution greatly improves the learn-
ing results, but the increase from n = 16 to n = 32 improves
the scores only moderately with the expense of a noticeable
increase in learning time. The resolution of n = 64, while
consuming a significant amount of time for learning, does
not improve the scores at all. Consequently, with limited
samples, the scores cannot be infinitely improved by sim-
ply increasing the resolution, because as the dimensionality
increases, the volume of the state space grows so fast that
the available samples become sparse. It is thus very difficult
to predefine an ideal value of n. In this example, when the
environment is sparse, n = 16 is ideal among all the tested
resolutions for learning good controllers efficiently.

However, our adaptive depth perception model outper-
forms any of the fixed resolutions: compared to n = 16,
higher scores can be obtained in a shorter amount of time.
The result is plotted with dotted red lines in Figure 6. More

specifically, the multi-scale state representation used in the
experiments is defined as

θ
a = (dn

g,d
n
2
g , . . . ,d4

g,d
n
o,d

n
2
o , . . . ,d4

o), (12)

where di
g and di

o are defined as in Equation 10 with the sub-
script g and o denote the perception of the goal and obstacles
respectively. The threshold εs, which controls the degree of
adaptivity in Algorithm 1, is set to 0.5.

We further extend the experiments by increasing the den-
sity of the environment. The next two experiments are per-
formed on environments containing 6 to 9 and 11 to 14 ob-
stacles respectively, and the densities are visualized in Fig-
ure 7a. When there are 6 to 9 obstacles, a similar conclusion
can be drawn from the plots in Figure 6: 1. Both n = 16 and
n = 32 lead to good scores, but the former is more efficient.
2. Learning with n = 64 is much slower, while the score is
not improved. 3. Our adaptive model has the best perfor-
mance: it obtains the good scores from high resolutions and
short learning time from low resolutions. However, as the
environment gets even more cluttered, Figure 6 (11 to 14
obstacles) shows that n = 16 is no longer comparable with
n = 32, and the latter is now the ideal fixed resolution. Our
adaptive model, however, still gains the better scores from
high resolutions and faster learning from low resolutions.

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

(a) Different sparsity

(b) Different shapes

Figure 7: Environments of varied density (a) and containing
obstacles of varied shapes (b).

5.4. Optimality

In order to evaluate the optimality of our controllers, we ap-
ply the A* search algorithm to compute the optimal score
for the same sets of random environments. We define the
heuristic function as the product of the straight line distance
from the current position to the goal and the minimal cost
required to travel one unit distance. In Figure 8, we plot in
red dotted lines the difference between the scores of our con-
trollers (learned with adaptive depth perception) and the op-
timal scores from A* search. The differences decreases as
the number of sampled trajectories N increases. In general,
more samples are required in more cluttered environments
to achieve the same optimality.

5.5. Run-time Performance

Since it takes less than 2 milliseconds (500 fps) for a con-
troller to make a decision in run-time, we can also allow the
controller to look one step ahead into the future for making
better decisions. Expanding the policy in Equation 3, we can
obtain the one-step look-ahead policy,

π(s) = argmax
a

(
R(s,a)+max

a′
Q̂∗(s′,a′)

)
, (13)

where s′ is the consequent state of taking action a from
the currents state s, and the depth values in s′ are rendered
by simulating the action a while assuming the environment
is temporarily static. The one-step look-ahead evaluation
is commonly used in animation literature [TLP07, LZ08,
LLP09, LP10]. Making a decision with the look-ahead pol-
icy takes about 15 milliseconds (66 fps) on average, and the
scores are shown in solid black lines in Figure 8a. When
the environments are sparse, by looking ahead one step, the
scores become very close to the optimal ones; when the en-
vironments are cluttered, the scores can be greatly improved
but more samples are still required for the controllers to con-
verge toward the optimal behaviors. However, given a start

(a) Optimality (b) Generalizability

100 200 300 400 500
N (#Trajectories / Iteration)

0
10
20
30
40
50
60

Sc
or

e
D

iff
er

en
ce

 to
 A

*

0~4 obstacles

 1 to 4 obstacles
 6 to 9 obstacles
 11 to 14 obstacles

○ ◻ △ ×
Shape in Test Environments

0
5

10
15
20
25
30

Sc
or

e

 Cylinder
 Box
 Triangle
 Bar
 Mixed

Figure 8: (a) We analyze the optimality of our controllers by
comparing the results to those generated with the A* search
algorithm, and plot the differences. The red dotted lines and
the black solid lines denote the controllers without and with
one-step look-ahead respectively. (b) We quantify the gener-
alizability of the controllers trained for different shapes by
evaluating them in environments containing other shapes.

state, A* requires 15 seconds on average to compute the op-
timal path, while our controller can make decisions sequen-
tially in real-time.

5.6. Generalizability

An advantage of using depth perception is that the learned
controllers can be directly applied to environments contain-
ing arbitrarily-shaped objects, and no preprocessing, such
as re-parameterization of the environment, is required. To
quantify this property, we generate several controllers, each
trained for obstacles of a specific shape, and evaluate the
controllers in environments containing obstacles of other
shapes. In this experiment, we start with cylinders that are
used throughout the previous sections, and then change the
shapes into boxes, triangles and bars, as shown in Figure 7b.
To maintain the density of the environment, the volume of
each obstacle is preserved when changed into other shapes.
The evaluation results are shown in Figure 8b. The plot
shows that the controller trained for cylinders can respond to
other shapes, but the scores depend on the roundness of the
obstacles in the environments used for evaluations. In gen-
eral, bars and triangles produce more difficult scenes, as they
tend to create wider blocks and narrower passages, while
cylinders produce the simplest environments. So the con-
trollers trained for cylinders are exposed to only few sam-
ples to learn difficult situations. This also explains why the
controller trained for bars has the best scores in all shapes.

Finally, we mix all four shapes to learn a controller, whose
scores are plotted in dotted blue line in Figure 8b. It has good
scores in all tests, even though when compared with the con-
troller trained for bars, it has worse performance in the en-
vironments containing only bars. This is due to the fact that
the use of all shapes make difficult situations appear less of-
ten in the training samples, while the test set of bars involves
only difficult situations. We conclude that using depth per-
ception, the learned controllers can respond to novel shapes,

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

but with limited capability, as the controllers can only infer
the situations from experience

5.7. Survival Game

In the end, we use a game-like scenario to highlight the
advantage of reinforcement learning over path search tech-
niques in real-time applications. We build a closed environ-
ment where all the obstacles move toward the character in a
constant speed. The only goal of the character is to survive
by not colliding with any obstacles or walls. Since the goal
is not a concrete state or position, it is difficult to define a
heuristic for path search algorithms like A*. In addition, ap-
plying search algorithms in real-time requires collision de-
tection to be performed for each expansion of the search
trees, which introduces considerable computation overhead.
On the contrary, the scenario can be easily defined in a
RL framework: in the learning stage, the character is given
a small reward for every surviving moment, but a deadly
penalty for any collision. This is all that is needed for the
character to learn a surviving strategy automatically by inter-
acting with the environment. The learned strategy is shown
in the accompanying video.

6. Conclusions

We have proposed a method that facilitates the application
of reinforcement learning to character control. Traditional
state models are manually made up with explicit descrip-
tions of the environment, but our state model lets the char-
acter perceive the environment directly. When using such a
generic high-dimensional sensor like depth vision, it is criti-
cal to adapt the dimensionality of the state space to the scene
complexity to avoid the curse of dimensionality. To enable
such adaptation, we propose a hierarchical state model and a
novel regression algorithm. Our hierarchical state model re-
places a single state definition of fixed dimensionality. Our
regression algorithm then uses the hierarchical state model
to adapt the dimensionality to the scene complexity. We
demonstrate that our approach based on adaptive depth per-
ception learns a better controller in a shorter amount of time.
The learned controller can also be directly applied to en-
vironments containing objects of novel shapes, without re-
parameterizations of the environment.

We see two major directions to improve our work. Firstly,
the character only perceives and generalizes the current sit-
uation but does not memorize its history. If the environment
is complex, consisting of dead ends like in a maze, the char-
acter may get trapped repeating the same mistakes. Incorpo-
rating short-term or long-term memory into the system can
resolve this problem. Maintaining global information like a
scene map [NRTMT95,KL99,Bak01] or modeling the prob-
lem with partially observable MDP can also help the charac-
ter to make better decisions. Secondly, in this work we only
use one-dimensional depth vision for learning, but in order

to let the character perform more complicated actions, two-
dimensional depth vision is required. As the potential num-
ber of dimensions increases quadratically, significantly more
computing resources are demanded, or the learning should
be performed more adaptively. However, we would like to
see our work as a first step to explore further research of
using adaptive state models in reinforcement learning.

Appendix A: Fitted Q Iteration Algorithm

Fitted Q iteration algorithm reformulates the Q-function de-
termination problem a sequence of kernel-based regression
problems [EGW05]. The algorithm takes as input an approx-
imation architecture F , and a traing set T that consists of
sequences of the character’s interactions with the environ-
ment. The algorithm starts by initializing Q to be zero (Line
2) . In each iteration, Q is used to derive the long-term re-
ward yt for each state-action pair xt (Line 5–8). Then Q is
updated by fitting the data points of (xt ,yt) with the approx-
imation architecture F (Line 9). In the end of each iteration,
new sequences of transitions are generated and added to the
training set T with the updated Q-function (Line 10).

Algorithm 2 Fitted Q Iteration Algorithm
Input: a set of transition tuples T = {(st ,at ,rt ,st+1)} and a
function approximator F
Output: an approximation of the optimal action-value func-
tion Q̂∗

1: n← 0
2: Q̂n← 0
3: repeat
4: n← n+1
5: for all (st ,at ,rt ,st+1) in T do
6: xt = (st ,at)
7: yt = rt + γmaxa∈A Q̂n−1(st+1,a)
8: end for
9: Use F to induce Q̂n from {(xt ,yt) : t = 1, . . . , |T |}

10: Generate new transitions for T using Q̂n.
11: until ‖Q̂n− Q̂n−1‖∞ < εq
12: return Q̂n

References

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion gener-
ation from examples. ACM Trans. Graph. 21 (July 2002), 483–
490. 2

[Bak01] BAKKER B.: Reinforcement learning with long short-
term memory. In NIPS (2001), pp. 1475–1482. 9

[BCvdPP08] BEAUDOIN P., COROS S., VAN DE PANNE M.,
POULIN P.: Motion-motif graphs. In Proceedings of the 2008
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (2008), SCA ’08, Eurographics Association, pp. 117–
126. 2

[CKHL11] CHOI M. G., KIM M., HYUN K., LEE J.: De-
formable motion: Squeezing into cluttered environments. Com-
puter Graphics Forum (2011). 2

c© The Eurographics Association 2012.

Wan-Yen Lo, Claude Knaus, and Matthias Zwicker / Learning Motion Controllers with Adaptive Depth Perception

[CLS03] CHOI M. G., LEE J., SHIN S. Y.: Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Trans. Graph. 22 (April 2003), 182–203. 2

[CTS∗09] CHESTNUTT J. E., TAKAOKA Y., SUGA K., NISHI-
WAKI K., KUFFNER J., KAGAMI S.: Biped navigation in rough
environments using on-board sensing. In IROS (2009), pp. 3543–
3548. 2

[EGW05] ERNST D., GEURTS P., WEHENKEL L.: Tree-based
batch mode reinforcement learning. J. Mach. Learn. Res. 6 (De-
cember 2005), 503–556. 3, 9

[GEW06] GEURTS P., ERNST D., WEHENKEL L.: Extremely
randomized trees. Machine Learning 63, 1 (2006), 3–42. 3, 5

[HG07] HECK R., GLEICHER M.: Parametric motion graphs. In
Proceedings of the 2007 symposium on Interactive 3D graphics
and games (New York, NY, USA, 2007), I3D ’07, ACM, pp. 129–
136. 2

[IAF05] IKEMOTO L., ARIKAN O., FORSYTH D.: Learning to
move autonomously in a hostile world. In ACM SIGGRAPH 2005
Sketches (New York, NY, USA, 2005), SIGGRAPH ’05, ACM.
2, 4

[JP05] JODOGNE S., PIATER J. H.: Interactive learning of map-
pings from visual percepts to actions. In Proceedings of the 22nd
international conference on Machine learning (New York, NY,
USA, 2005), ICML ’05, ACM, pp. 393–400. 2

[JP07] JODOGNE S., PIATER J. H.: Closed-loop learning of vi-
sual control policies. J. Artif. Int. Res. 28 (March 2007), 349–391.
2

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs.
ACM Trans. Graph. 21 (July 2002), 473–482. 2

[KL99] KUFFNER J. J., LATOMBE J.-C.: Fast synthetic vision,
memory, and learning models for virtual humans. In CA (1999),
pp. 118–127. 2, 4, 9

[KL00] KUFFNER J. J., LAVALLE S. M.: Rrt-connect: An ef-
ficient approach to single-query path planning. In Proc. IEEE
ICRA (2000), pp. 995–1001. 2

[KLM96] KAELBLING L. P., LITTMAN M. L., MOORE A. W.:
Reinforcement learning: a survey. J. Artif. Int. Res. 4 (May 1996),
237–285. 2

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS J. K.,
POLLARD N. S.: Interactive control of avatars animated with
human motion data. ACM Trans. Graph. 21 (July 2002), 491–
500. 2

[LK00] LAVALLE S. M., KUFFNER J. J.: Rapidly-exploring ran-
dom trees: Progress and prospects. In Algorithmic and Compu-
tational Robotics: New Directions (2000), pp. 293–308. 2

[LK05] LAU M., KUFFNER J. J.: Behavior planning for
character animation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2005), SCA ’05, ACM, pp. 271–280. 2

[LK06] LAU M., KUFFNER J. J.: Precomputed search trees: plan-
ning for interactive goal-driven animation. In Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2006), SCA ’06, Eurographics Association, pp. 299–
308. 2

[LL04] LEE J., LEE K. H.: Precomputing avatar behavior
from human motion data. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2004), SCA ’04, Eurographics Association, pp. 79–87. 2

[LLKP11] LEVINE S., LEE Y., KOLTUN V., POPOVIĆ Z.: Space-
time planning with parameterized locomotion controllers. ACM
Trans. Graph. 30 (May 2011), 23:1–23:11. 2, 3

[LLP09] LEE Y., LEE S. J., POPOVIĆ Z.: Compact character
controllers. ACM Trans. Graph. 28 (December 2009), 169:1–
169:8. 2, 3, 8

[LP10] LEE S. J., POPOVIĆ Z.: Learning behavior styles with in-
verse reinforcement learning. ACM Trans. Graph. 29 (July 2010),
122:1–122:7. 2, 3, 8

[LWB∗10] LEE Y., WAMPLER K., BERNSTEIN G., POPOVIĆ J.,
POPOVIĆ Z.: Motion fields for interactive character locomotion.
ACM Trans. Graph. 29 (December 2010), 138:1–138:8. 2, 3

[LZ08] LO W.-Y., ZWICKER M.: Real-time planning for pa-
rameterized human motion. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2008), SCA ’08, Eurographics Association, pp. 29–38. 2, 3, 8

[LZ10] LO W.-Y., ZWICKER M.: Bidirectional search for inter-
active motion synthesis. Computer Graphics Forum 29, 2 (2010),
563–573. 2

[MCKK05] MICHEL P., CHESTNUTT J., KUFFNER J., KANADE
T.: Vision-guided humanoid footstep planning for dynamic en-
vironments. In in Proc. of the IEEE-RAS/RSJ Int. Conf. on Hu-
manoid Robots (HumanoidsŠ05) (2005), pp. 13–18. 2, 4

[MP07] MCCANN J., POLLARD N.: Responsive characters from
motion fragments. ACM Trans. Graph. 26 (July 2007). 2

[MSN05] MICHELS J., SAXENA A., NG A. Y.: High speed
obstacle avoidance using monocular vision and reinforcement
learning. In Proceedings of the 22nd international conference
on Machine learning (New York, NY, USA, 2005), ICML ’05,
ACM, pp. 593–600. 2, 4

[NRTMT95] NOSER H., RENAULT O., THALMANN D.,
MAGNENAT-THALMANN N.: Navigation for digital actors
based on synthetic vision, memory, and learning. Computers &
Graphics 19, 1 (1995), 7–19. 2, 9

[OPOD10] ONDŘEJ J., PETTRÉ J., OLIVIER A.-H., DONIKIAN
S.: A synthetic-vision based steering approach for crowd simu-
lation. ACM Trans. Graph. 29 (July 2010), 123:1–123:9. 2

[PO03] PETERS C., O’SULLIVAN C.: Bottom-up visual attention
for virtual human animation. In CASA (2003), pp. 111–117. 2

[SB98] SUTTON R., BARTO A.: Reinforcement Learning: An In-
troduction. MIT Press, Cambridge, MA, 1998. 2, 3

[SBR07] SPRAGUE N., BALLARD D., ROBINSON A.: Modeling
embodied visual behaviors. ACM Trans. Appl. Percept. 4 (July
2007). 2

[SH07] SAFONOVA A., HODGINS J. K.: Construction and opti-
mal search of interpolated motion graphs. ACM Trans. Graph.
26 (July 2007). 2

[SO06] SHIN H. J., OH H. S.: Fat graphs: constructing an inter-
active character with continuous controls. In Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2006), SCA ’06, Eurographics Association, pp. 291–
298. 2

[TLP07] TREUILLE A., LEE Y., POPOVIĆ Z.: Near-optimal
character animation with continuous control. ACM Trans. Graph.
26 (July 2007). 2, 3, 8

[WAH∗10] WAMPLER K., ANDERSEN E., HERBST E., LEE Y.,
POPOVIĆ Z.: Character animation in two-player adversarial
games. ACM Trans. Graph. 29 (July 2010), 26:1–26:13. 2

[ZS08] ZHAO L., SAFONOVA A.: Achieving good connec-
tivity in motion graphs. In Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, Switzerland, 2008), SCA ’08, Euro-
graphics Association, pp. 127–136. 5

c© The Eurographics Association 2012.

