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Abstract
Our paper “Learning to Importance Sample in Primary Sample Space” proposes a novel importance sampling approach
for Monte Carlo rendering that uses a neural network to learn how to sample from a desired density represented by a set of
samples. In this supplementary document, we provide information on four additional experiments:
1. Reusing trained neural networks. Our neural networks trained on one camera view of a scene can generalize to multiple
new camera views. Given weights of a trained neural network for one view, we reuse them to initialize a network for the new
view. Experimental results show that reusing trained weights can effectively accelerate re-training of up to 90-degree camera
view changes. Hence training costs that were spent on previous views can be amortized over new views.
2. Importance sampling small illumination features. Our approach works in a data-driven manner, and the learning of
importance sampling depends on provided training data. Our additional experiments evaluate the performance of neural
network importance sampling of small illumination features, with respect to different sizes of training datasets.
3. Efficiency of resampling. We present an analysis of time costs of the resampling stage, and discuss the size of the candidate
set of initial examples in terms of a trade-off between efficiency and quality of resampling.
4. Importance sampling in high dimensional space. We further investigate how our approach behaves in the case of
importance sampling a high dimensional primary sample space.

1. Reusing Trained Neural Networks

Visible elements of the 3D real world are richly diverse, and the
difference in features between two arbitrary scenes can be quite
large. Therefore, our approach opts to perform per-view learning,
and computational costs have to be invested in the training and in-
ference processes for each camera view. Fortunately, there is co-
herency of contents between different camera views within a spe-
cific scene. Given a new camera view, we can reuse weights of a
neural network trained on a previous view as an initialization, in-
stead of training the neural network from scratch. In this way we
can accelerate the convergence speed of neural networks training
as demonstrated by the following experimental results.†

Starting from a camera view 1, we change gaze angles of cam-
eras by approximately 10, 45, and 90 degrees for views 2, 3, and
4, respectively. Figure 3 and Figure 4 compare rendering errors un-
der equal training time with and without network weight reuse from
view 1 for two different scenes. This demonstrates that weight reuse

† All timings in the supplementary document are measured with respect to
a 3.60 GHz i7-7700 Intel CPU and a Nvidia Titan V GPU, which is different
from the main paper.

significantly decreases error compared to training from scratch, and
only a few minutes of training time can reduce the MSE of baseline
path tracing by almost a factor of two.

Figure 1 plots test losses of 4D PSS learning in terms of the
reusing approach and training from scratch. The size of a training
dataset is equal to 160×88×epp. Note that test data are not used in
the training process, thus test losses faithfully reflect generalization
ability of trained neural networks. The neural network of view 1 is
initially trained on an epp-32 dataset until convergence. The results
show that weight reuse can lead to much faster convergence com-
pared to training from scratch. For example, we can observe in view
2 that, using less than 100 seconds, weight reuse gives lower errors
than training from scratch for 800 seconds. For view 3 and view 4,
the coherence with view 1 is greatly attenuated, thus the advantage
of weight reuse is gradually reduced. We still observe faster con-
vergence than training from scratch, albeit with higher test errors at
the start of training. To sum up, given the same level of test errors,
the plots in Figure 1 show an accelerated convergence of weight
reuse by factors of roughly 5.0x/4.0x/2.0x for camera views 2/3/4,
compared to training from scratch.

Figure 1 further investigates the trade-off between using a
smaller training data set and faster training time (per epoch) ver-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-5053-5511
https://orcid.org/0000-0001-8630-5515


Q. Zheng & M. Zwicker / Supplementary Document for Learning to Importance Sample in PSS

sus larger datasets and slower training time (per epoch). The re-
sults show that at equal training time, a larger data set (trained over
fewer epochs) generally performs slightly better. Finally, we exper-
imented with reusing networks for training on epp-8 datasets, but
found that it leads to over-fitting problems.

Figure 3 and Figure 4 show equal sample count (128 spp) com-
parisons of the COUNTRY KITCHEN and the WHITE ROOM scene.
We compare images of three new views rendered with baseline
path tracing, and the epp-16 weight reuse and epp-16 training from
scratch approaches at equal training time. Training sessions stop at
the epoch closest to the preset training time of a specific view. The
reusing approach is initialized with weights of networks trained on
camera view 1. As can be noticed, weight reuse generates images
with less noise and lower numerical errors. Compared to view 1,
the change of camera gaze angle in view 2 is smaller than that in
camera view 3 and 4, thus weight reuse provides more significant
improvements in view 2.

Since the coherency among camera views is more significant
when they are close, it is advantageous to incrementally reuse net-
work weights optimized on successive views along a camera path,
instead of reusing the network weights of a single original view.
Figure 2 demonstrates the advantages of this approach. We can
see that reusing networks of closer views effectively improves the
speed of convergence. This shows that incremental weight reuse is
a simple and effective method for rendering multiple frames along
a predefined camera path, along which neighboring frames share
coherent scene contents.

2. Importance sampling small illumination features

Small illumination features like caustics or highlights, are noto-
riously challenging for many rendering methods. Figure 5 shows
an example scene with such difficulties, including bright cardioid
caustics in the silver ring, faint golden caustics (green close-ups),
faint white caustic with fine structures (red close-ups) and small
glints on coins. We use equal sample budget (128 spp) comparisons
between our method and the path tracing baseline. Our method con-
ducts 4D PSS importance sampling. The size of a training dataset
is set to epp (examples per pixel) times 100× 100. Three training
datasets are denoted as epp-1, epp-4 and epp-64.

The path tracing baseline applies uniform random PSS sampling,
and the probability of sampling paths of caustics is low. Therefore,
the baseline is inefficient to render small caustics. In contrast, our
neural approaches successfully capture small illumination features.
Also, it can be observed that the neural network trained on the epp-
1 data set gives results close to the baseline path tracing approach.
This is because we initialize our neural network with an identity
mapping (i.e., a uniform random distribution), and it will fall back
to the uniform PSS sampling when training examples are not suf-
ficient. Given more training examples, our neural approaches sig-
nificantly outperform the baseline. Note that the fine structures of
small caustics are clearer and the faint caustics are smoother in our
method. In summary, given sufficient training data our approach is
able to improve rendering of challenging small illumination fea-
tures.

Table 1: Efficiency of resampling. The number of examples in the
candidate set is equal to α times the number of examples in the
training dataset, which is set to 160× 88× 16. For fair compar-
isons, timings are with respect to computation of 1 CPU thread.

Ratio α Candidates# Draw candidates (s) Resample (s)

1 225280 3.86 116.64
2 450560 7.69 118.71
4 901120 15.57 117.67
8 1802240 30.69 123.74

16 3604480 68.62 128.25

3. Efficiency of resampling

Our training examples come from a resampling stage. This stage
is composed of drawing C candidate examples from the uniform
random distribution and resampling K examples from the candidate
set. The total time cost can be expressed as

T =Ct1 +Kt2, (1)

where t1 is the time cost of drawing candidate examples and eval-
uating weights, and t2 is the time of drawing examples from can-
didate set. In practice, resampling an example from a discrete dis-
tribution can be conducted in constant time. Therefore, the total
time cost T mainly depends on C and K. Commonly, C should be
large enough to better represent the underlying target distribution
and minimize the bias introduced by that only finite C is used in
practice.

In Table 1, we present timings of the two steps for the COUN-
TRY KITCHEN scene. In this experiment, K is set to 160×88×16.
As can be seen, drawing candidate examples has linear complexity
in terms of the candidate sample set size C. C is set to α times of
K (i.e., C = αK). Figure 6 shows training and test losses of neural
networks trained on data from different choices of α. When us-
ing a small α, candidate examples are not sufficient to represent the
target distribution and neural networks suffer from overfitting prob-
lems. Meanwhile, a large α leads to a large candidate set and longer
pre-processing time. Taking into account the balance between per-
formance and efficiency, a trade-off choice of α is 4 ∼ 8.

4. Importance sampling high dimensional PSS

In this section, we investigate the ability of neural networks to learn
high dimensional distributions in PSS. Specifically, we warp the
first 12 dimensions of a PSS vector. To learn this 12D PSS distribu-
tion, we use a larger neural network with 16 coupling units, whose
total number of internal layers reaches 66 (four internal layers per
coupling unit, one input layer and one output layer). For an internal
layer within a coupling unit, the number of neurons is set to 60.

Since the neural network has a relatively deep architecture, train-
ing datasets should be sufficiently large to avoid overfitting. Fig-
ure 7a, shows convergence behaviors of the neural network training
under different sizes of training datasets. We evaluate four train-
ing datasets with increasing sizes: epp-64, epp-256, epp-1024 and
epp-4096. The ratio α of candidate sets is set to 6. From the gap
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Figure 1: Comparisons of test losses of the weight reusing approach and training from scratch for 4D PSS warps. Each training session
runs for the same time of 800 seconds. View 1 denotes the original camera view. The reusing approach leverages the weights of the neural
networks trained on view 1 to initialize the neural networks of the other camera views.
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Figure 2: Test losses of incremental weight reuse and training from
scratch. Each training session runs for 800 seconds. The reusing
approach leverages previously trained networks of view 1 and 3
to initialize the networks of view 4. Initializing with pretrained
weights of a closer view (view 3) further improves training con-
vergence compared to more distant views (view 1).

between training and test losses it can be observed that the train-
ing suffers from overfitting when the number of training examples
is too small. As more training examples are used, the gap narrows
and the overfitting problem is alleviated. This is, however, accom-
panied by longer preprocessing time and much longer training time
(Table 2).

Figure 8 shows an equal sample count (128 spp) comparison of
rendering results. Close-up regions are mainly lit by indirect illumi-
nation, which is produced by light paths with many bounces. The
neural network training of epp-64 are stopped early at epoch 20,
whereas other neural networks are trained for 120 epochs. We ob-
serve that neural networks trained on larger datasets lead to lower

Table 2: Time costs of resampling and training for learning a 12D
PSS distribution. The resampling process is implemented with 1
CPU thread. Neural networks are trained for 120 epochs with vary-
ing sizes of training datasets. Training example count is equal to
epp times of the image resolution 160×88. The data come from the
COUNTRY KITCHEN scene.

Datasets Resampling (h) Training (h)

epp64 0.29 0.84
epp256 0.78 1.93

epp1024 1.76 7.34
epp4096 8.14 25.59

Table 3: Time costs of resampling and training for learning a 6D
PSS distribution. Other settings are the same as in Table 2. The
data are from the COUNTRY KITCHEN scene.

Datasets Resampling (h) Training (h)

epp4 0.010 0.05
epp64 0.018 0.34

epp256 0.656 1.29
epp1024 2.720 5.19

rendering errors. When the training dataset is small, the trained net-
work is plagued by overfitting, and gives rise to less error reduc-
tions.

We further investigate the relation between the training data size
and overfitting by learning a 6D PSS distribution from the same
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View 1 View 2 View 3 View 4

MSE 0.05238 0.04056 0.03014 0.08935 0.06082 0.04556 0.06589 0.04939 0.04810

Figure 3: Network weight reusing for the COUNTRY KITCHEN scene. View 1 is the original camera view, whereas the following three views
correspond to gaze angle changes of approximately 10, 45, and 90 degrees, respectively. In the close-ups under each reference image, we
compare images of the path tracing baseline (left), training from scratch (middle) and networks reusing (right) at equal training time. The
preset training time of view 2/3/4 is 200/320/480 seconds.

View 1 View 2 View 3 View 4

MSE 0.17783 0.11186 0.08557 0.12602 0.08076 0.06951 0.19003 0.14585 0.10237

Figure 4: Network reusing for the WHITE ROOM scene. View 1 shows the original camera view, and the other three views correspond to
gaze angle changes of approximate 10, 45, and 90 degrees. Close-ups below each reference image are path tracing baseline (left), training
from scratch (middle) and network reusing (right). The preset training time of view 2/3/4 is 160/240/400 seconds.

scene, as shown in Figure 9. Neural networks have the same archi-
tecture as before, and they are trained on epp-4, epp-64, epp-256
and epp-1024 training datasets, respectively. We tabulate the time
cost of resampling and training in Table 3, and convergence behav-
iors of neural networks are plotted in Figure 7b. An epp-4 dataset
is used in this experiment, and the neural network overfits to the
small dataset. As shown in the red close-up of epp-4, there is a
change of the noise pattern transitioning from left to right, which
is mainly caused by overfitting. Neural network sampling focuses
more on the PSS distribution corresponding to the left part and
leads to smoother result there. With more training data used, the
overfitting issue is mitigated, and the neural sampling effectively
reduces the rendering errors.

While the behavior of the trained networks in 6D and 12D are
overall quite similar, it can be noticed that the learned 6D PSS warp
provides slightly lower rendering errors than the 12D warp. This is
related to the “curse of dimensionality” problem. Suppose λ sam-
ples are desired to sample each dimension, which will lead to a re-
quirement of λ

12 examples. The required number of samples grows
exponentially as the dimension λ increases, thus 12D learning in
theory requires much more data than 6D learning. To take advan-
tage of such a large training dataset, however, we would likely need
an even deeper neural network. This would incur prohibitive pre-
processing and training time. The high time cost makes learning
higher dimensional PSS distribution not practical at present.
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Reference PT baseline Ours trained by epp1 Ours trained by epp4 Ours trained by epp64

0.09275 0.06863 0.05701 0.05038

Figure 5: Comparisons of small illumination features in the COINS scene rendered at 128 spp. MSE is given below each image. The reference
image is rendered with Metropolis light transport using 32768 spp. Note that our neural approach gives better cardioid caustics in the silver
ring, and it preserves small caustics with fine structures.
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Figure 6: Test losses of neural networks trained on data produced
with different candidate sets. Each training session runs for 100
epochs, and hyperparameters for each session are the same.
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Figure 7: Test losses of (a) 12D PSS learning and (b) 6D PSS
learning, with respect to training datasets of different sizes. Each
training session runs for 120 epochs, and hyperparameters for each
training session are the same.
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Reference Baseline Epp 64 Epp 256 Epp 1024 Epp 4096

MSE 0.06519 0.03621 0.02963 0.02730 0.02585

Figure 8: Equal sample count (128 spp) comparisons of 12D PSS importance sampling for the COUNTRY KITCHEN scene. Close-ups show
regions mainly lit by indirection illumination, which depends on light paths with many bounces. Baseline path tracing method uses uniform
random PSS sampling. While smaller training datasets lead to some error reduction, our method further improves by using a larger training
datasets.

Reference Baseline Epp 4 Epp 64 Epp 256 Epp 1024

MSE 0.06519 0.05420 0.03360 0.02815 0.02531

Figure 9: Equal sample count (128 spp) comparisons of rendering results from 6D PSS importance sampling. Neural networks are trained
on datasets with four different sizes. MSE errors are provided below images. The reference image is rendered by Metropolis light transport
using 32768 spp. Similar as in the 12D case, larger training datasets lead to better results.
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