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Abstract based feature learning techniques have achieved unprece-
dented results in classification, detection and segmenta-
Unsupervised feature learning for point clouds has been tion [27,[31/ 22| 35, 23, 39]. However, supervised learning
vital for large-scale point cloud understanding. Recen- requires intense manual labeling effort to obtain supervis
t deep learning based methods depend on learning globalinformation. Therefore, unsupervised feature learnirapis
geometry from self-reconstruction. However, these method attractive alternative and a promising research challenge

are still suffering from ineffective learning of local geem Several studies have tried to adress this challenge[1, 21,
try, which significantly limits the discriminability of leed 4,34,[33[ 42 32]. To learn the structure of a point cloud
features. To resolve this issue, we propose MAP-VAE towithout additional supervision, these generative models a
enable the learning of global and local geometry by joint- trained by self-supervision, such as self-reconstrudin

ly leveraging global and local self-supervision. To enable [4] [6,[42/338[32] or distribution approximatidn [1,121] 34],
effective local self-supervision, we introduce multit8ng which is implemented by auto-encoder or generative ad-
analysis for point clouds. In a multi-angle scenario, we versarial networks |8] respectively. To capture finer glob-
first split a point cloud into a front half and a back half  aj structure, some methods [34] 33] 42, 32] first learn local
from each angle, and then, train MAP-VAE to learn to pre- structure information in point cloud patches based on which
dict a back half sequence from the corresponding front half the global point cloud is then reconstructed. Because of
sequence. MAP-VAE performs this half-to-half prediction |acking effective and semantic local structure superisio
using RNN to simultaneously learn each local geometry andhowever, error may accumulate in the local structure learn-
the spatial relationship among them. In addition, MAP-VAE ing process, which limits the network’s ability in 3D point
also learns global geometry via self-reconstruction, veher cloud understanding.

we emp_loyavariational con;traint to fa_cilitate novel skap To resolve this issue, we propose a novel deep learn-
generation. The outperforming results in four shape analy- o model for unsupervised point cloud feature learning by
sis tasks show that MAP-VAE can learn more discriminative simultaneously employing effective local and global self-
global or local features than the state-of-the-art methods supervision. We introduce multi-angle analysis for point

clouds to mine effective local self-supervision, and com-
] bine it with global self-supervision under a variationaheo
1. Introduction straint. Hence we call our model Multi-Angle Point Cloud

. .. Variational Auto-Encoder (MAP-VAE). Specifically, to em-
Point clouds have become a popular 3D representation mploy local self-supervision, MAP-VAE first splits a point

machine vision, autonomous driving, and augmented reah—cIoud into a front half and a back half under each of sev-

v, becaL_Jse they are ceasy to acquire and manlpula'ge. Thereéral incrementally varying angles. Then, MAP-VAE per-
fore, point cloud analysis has emerged as a crucial prob-

lem in the area of 3D shape understanding. With the heIpLo;Q(Shg?gé?;?gg ?;ngg:?gstoomﬁz asseequlgenrl(;eoczftzzl/sg?n_
of extensive supervised information, recent deep learning b g seq

plementary front halves. Half-to-half prediction aims to
“Corresponding Author. This work was supported by Nationay K~ Capture the geometric and structural m_formatlon of local
R&D Program of China (2018YFB0505400) and NSF (award 183358 regions on the point cloud through varying angles. More-
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summary, our contributions are as follows:
Aggregation branch A Prediction branch P

Reconstruction branch R
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i) We propose MAP-VAE to perform unsupervised fea-
ture learning for point clouds. It can jointly leverage
effective local and global self-supervision to learn fine-
grained geometry and structure of point clouds.

Figure 1. The framework of MAP-VAE.

autoencoder networkl[1] 4, 42,133, 32]. With the help of ad-

versarial training, a different kind of global self-supisign

is employed to train the network to generate plausible point

clouds by learning a mapping from a known distribution

iii) We provide a novel way to consistently split point to the unknown distribution th_at the point clouds are sam-
clouds into semantic regions according to view angles, Pléd from [1,[21,[34].  For finer global structure infor-
which enables the exploration of the fine-grained dis- Mation, some methods take a step further to jointly em-

criminative information of point cloud regions. ploy local structure information captured in local region-
s [34,33/42 32]. These methods first learn local structure

information in point cloud patches by clustering[42], con-
ditional point distribution([33], graph convolution [34¢y
Deep learning models have led to significant progress in fully connected layers [32], based on which the whole point
feature learning for 3D shapes |12, 11] 14] [13,[17,18, 9, cloud is then reconstructed. However, because of lacking
19,[15,10]. Here, we focus on reviewing studies on point effective and semantic local structure supervision, this p
clouds. For supervised methods, supervised information,cess is prone to error accumulation in the local structure
such as shape class labels or segmentation labels, are réearning process, which limits the network’s ability in pbi
quired to train deep learning models in the feature learningcloud understanding. To resolve this issue, MAP-VAE in-
process. In contrast, unsupervised methods are designetioduces multi-angle analysis for point clouds, which pro-
to mine self-supervision information from point clouds for Vides effective and semantic local self-supervision. MAP-
training, which eliminates the need for supervised informa VAE can also simultaneously employ local and global self-
tion that can be tedious to obtain. We briefly review the supervision, which further differentiates it from others.
state-of-the-art methods in these two categories as fellow
Supervised feature learning.As a pioneering work, Point- 3. Qverview
Net [26] was proposed to directly learn features from point
clouds by deep learning models. However, PointNet is lim-  To jointly leverage local and global self-supervision to
ited in capturing contextual information among points. To learn features from point clouds, MAP-VAE simultaneous-
resolve this issue, various techniques were proposed to esly conducts half-to-half prediction and self-reconstioiet
tablish graph in a local region to capture the relationship a by three branches, i.e., which we call aggregation branch
mong points in the region [31, 22.135,23] 39]. Furthermore, A, reconstruction branch, and prediction brancRh, as il-
multi-scale analysi$[27] was introduced to extract more se lustrated in Fig[ll. Specifically, branch and branchP
mantic features from the local region by separating points together perform the half-to-half prediction while branth
into scales or bins, and then, aggregating these features bgind branchk together perform the self-reconstruction.
concatenation [38] or RNN[25]. These methods require su- A training sampleT; provided to MAP-VAE to learn is
pervised information in the feature learning process, tvhic formed by a front half sequen&¥’, a back half sequence
is different from unsupervised approach in MAP-VAE. SB, and an original point cloudZ. The corresponding ele-
Unsupervised feature learning. An intuitive approach ~ ments in sequenc&” andS” are a front halfn’ (in red)
to mine self-supervised information is to perform self- and its complementary back haiiZ (in green) which are
reconstruction which first encodes a point cloud into a fea- obtained by splitting the original point cloudi (in blue)
ture and then decodes the feature back to a point cloudfrom a specific angle.
Such global self-supervision is usually implemented by an  The aggregation branchencodes the geometry of local

i) We introduce multi-angle analysis for point cloud
understanding, which provides semantic local self-
supervision to learn local geometry and structure.

2. Related work
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Figure 2. (a) Geodesic splitting/ into a front halfm! (in red)
and a back halinZ (in green) from the-th angle. (b)M is fur-
ther split from allV" angles located aroun8 in clockwise order,
where subset witlh” = 3 out of VV angles (indicated by dotted or
solid line) are selected to establish a half-to-half seqagair. (c)
The training sampl&'; from each one o angles.

(b) (©)

e

Figure 3. The comparison of front halves (red parts in (a)@pd
split by Euclidean distance and geodesic distance (map)n (b

and a back half from different angles, where the front half
is the half nearer to the viewpoint than the back half. This
enables MAP-VAE to observe different semantic parts of
a point cloud, and it also preserves the spatial relatignshi
among the parts by incrementally varying angles.

For a point cloudM, we split M from V different an-
gles into front halves (in red) and their complementary back
halves (in green), as shown in Fig. 2 (b), where the view-
points are located around on a circle. From the-th
viewpoint, M is split into a front halfm!” and a back half

point clouds and their spatial relationship by aggregating m? in Fig.[2 (a), wheren!" is formed by theN nearest

all front halves in sequencg’ in order. It first extracts
the low-level featuref of the original point cloudM and
the low-level featuref!” of each front halfn! by a global
encoder and a local encoder, respectively. Then, it leams t
angle-specific featurk; of M by aggregating all low-level
featuresf! using an aggregation RNN4.

The reconstruction branchR performs self-

points (in red) ofM to the viewpoint whilem? is formed

by the N farthest points (in green) to the viewpoint.
Geodesic splitting. A naive way of finding theV nearest
points to define a front hakn’ is to sort all points o/

by the Euclidean distance between each point and the view-
point. However, on some point clouds, this method may not
produce semantic front halves, since the regions in a front

reconstruction by decoding the learned angle-specifichalf are not continuous, as demonstrated in [Hig. 3 (a). Itis

featureh; into a point cloudM. This reconstruction is
conducted by a global decod®r which tries to generate
M as similar as possible td. In addition,R employs a
variational constraint to facilitate novel shape generati
At the same time, the prediction branelperforms half-

important to encode semantic front halves, since this would
help MAP-VAE to seamlessly understand the entire surface
from a viewpoint under a multi-angle scenario.

To resolve this issue, we leverage the geodesic distance
on the point cloud[[2] to sort the points. Specifically, we

to-half prediction by decoding the learned angle-specific first find a nearest point to thev-th viewpoint onM by

featureh; into a back half sequenc®? which is paired
with the corresponding front half sequer€é. This pre-
diction is conducted by a prediction RNB¥ which tries to
predict the sequen@®? as similar as possible ®7.

4. Multi-angle splitting

Multi-angle splitting. A key idea in MAP-VAE is a novel
multi-angle analysis for point coulds to mine effectivedbc
self-supervision. Intuitively, observing a point cloudtn
different angles, explicitly presents the correspondsnce

Euclidean distance. Then, we sort the rest of point3bimn
terms of their geodesic distances to the found nearest point
u, as shown by the geodesic map in Fig. 3 (b). Finally,
and its nearesV — 1 points form the front halfn!’, while
the farthestV points form the back halfnZ, as illustrated
by the red part and green part in Hig. 3 (c), respectively.
Half-to-half sequence pairs. To leverage the correspon-
dence between front half and back half and their spatial re-
lationship under different angles, we establish a halfiat-
sequence pair starting from each one oftthangles.

Along the circle direction of varying angles, as illustrat-

and relationships among different shape regions, given ased by the clockwise green arrow in Fig. 2 (b), we select front
the correspondence between the front and back halves ofalvesm? and their complementary back halvesg® from
the shape in each view. Our multi-angle analysis providesW out of theV angles. The selectea!” form a front half

multiple regions (front halves) of the point cloud as in-

sequence8?” while the complementaryn” form a back

put, from which the corresponding missing regions (back half sequenc&?, whereS* = [mf'jv € [1, V], |v| = W],
halves) need to be inferred. This encourages MAP-VAE S” = [mZ|v € [1, V], |v] = W] and each element i&"

to learn a detailed shape representation that facilitdaggs h
quality classification, segmentation, shape synthesid, an
point cloud completion.

We achieve this by splitting a point cloud into a front

corresponds to its complementary elemen8i. Thus, a
half-to-half sequence pai8*’, S?) consists o8 andS~.

To comprehensively observe the point cloud, we select
W angles which uniformly cover the whole shape in each



half-to-half sequence pa{S*,S?). As demonstrated by Specifically, the variational reparameterization first em-
the dotted lines in Fid.12 (b), we seleldf = 3 angles in ploys fully connected layers to respectively estimate the
order to form the firstS¥, S#), and then, along the green meanu and variancer for the distribution ofh;. Then,
arrow, we form the las{S*',S?) by angles indicated by  a noise vectoe is sampled from a unit multi-dimensional

the solid lines. EacliSY', S?) forms a training sampld; Gaussian distributioV'(0,1), ase ~ N (0,1) ande €
in company with the point cloudZ. Finally, we obtain all R'Z. Finally, we scale the noiseby o and further shift it
V training sampleg§T;|: € [1,V]} from M in Fig.[2 (c). by u, such that the latent vecter= p + € ® o. The vari-
ational reparameterization enables reconstruction brBnc
5. MAP-VAE to push the distribution(z|h;) to follow the unit multi-

dimensional Gaussian distribution by minimizing the KL

divergence between the distributig(z|h;) andN'(0,1).
Thus, the cost of reconstruction branghis defined

based on Eq[{1) below, wheteis a balance parameter.

Aggregation branch A. For a training samplél’; con-
taining a half-to-half sequence p&B*', S?) and the point
cloud M, aggregation branch encodes the global geome-
try of M, local geometry of each one & m’ in S, and
the spatial relationship among’’. Aggregation branci
first extracts the geometry of each involved point cloud into Cr = Cp + a x KL(q(z|h;)||N (0, 1)). (2)
a low-level feature by encoder, and then, aggregates all thE'PredlcUon branch P. Similar to reconstruction brandR,

low-level features with their spatiality by aggregationRN prediction branch P decodes the learned angle-specific fea-

A
U . tSpeigcglly, vvlebexltract tge low- (Ijet\;]el :‘eatlljfeofl f2N ‘ tureh; to predict the back half sequen8é& corresponding
points on y a global encoder, and the low-level fealure 4, gr - granchp tries to predict a back half sequengé&

f,” of N points onm,” by a local encoder. Both the glob- o' nijar a6 possible 87 by a prediction RNNUY. At

al and local encoders employ the same architecture as th%ach ofiV” stepsUP predicts one back hathi? in the same
encoder in PointNet++ [27], the only difference is the input o\ of elements i§ 2. This enabled® to learn the half-
number of points. SFuk_JsequentIy, aggregation RiNag- to-half correspondence and the spatial relationship among
gregatesf and allf, in W + 1 steps, where we employ 0 payes of\r. To further push MAP-VAE to compre-
GRU cell with512 hidden state. Finally, we use the hidden hensively understand the point cloud® predicts the low-
state as the angle-specific featdrgof M since the first level featuref B of each one ofV” back ﬁalme rather than
front half in S.F is observed starting from theth angle. the spatial povint coordinates aiZ, which isvcomplemen-
Recqnstructlon branchR. By _decodmg the learned angle- tary to reconstruction brandh. Tﬁe ground truth low-level
specific featurér,;, reconstruction brandR tries to generate featuref? of m” is also extracted by the local encoder in

a point cloudM as similar as possible to the original point ) .
cloud M by a global decodep. D is formed by 3 fully con- branchA. Thus, the cost of brandh is defined as follows,

nected layers (1024-2048-6114) and 2 convolutional layers 1 .
(with 256 and 3l x 1 kernels each), where batch normaliza- Cp = 377 X DR F 2 ol 3)
tion is used between every two layers. Here, we prefer Earth ve[l,V],|v|=W

Movers distance (EMD) [29] to Chamfer Distance (CD) [5]
to evaluate the distance between the reconstrubfednd
the originalM, since EMD is more faithful than CD to the
visual quality of point clouds[1]. The EMD distance be-
tweenM and M is regarded as the cost of reconstruction
to optimize, as defined below, whepds a bijection from a
pointz on M to its corresponding point(z) on M,

Objective function. For a sampl&’;, MAP-VAE is trained
by minimizing all the aforementioned costs of each branch,
as defined below, whergis a balance parameter.

min Cr + 8 x Cp. (4)

After training, MAP-VAE represents the point clodd

as a global featur&l by aggregating the angle-specific fea-
" Ef Z Iz = ¢(@)ll2- (1) tureh; learned from each sampk, of M using max pool-
N M _ _ing, such thatif = Pool,c(; v{h;}.

In addition, we employ a variational constraint [20] in ’
r_econstrqct_ion brancR to facilitate noyel shape genera- @ Experimental results and analysis
tion. This is implemented by a variational reparameteri-
zation process, as shown in Fig. 1. The variational repa- In this section, we first explore how the parameters in-
rameterization transforms the angle-specific feakyrimto volved in MAP-VAE affect the discriminability of learned
another latent vectot that roughly follows a unit multi-  global features in shape classification. Then, MAP-VAE is
dimensional Gaussian distribution. After training, branc evaluated in shape classification, segmentation, novpksha
R can generate a novel shape by sampling a latent vectogeneration, and point cloud completion by comparing with
from the unit Gaussian to the global decoier state-of-the-art methods.



Table 1. The effect o8, « = 0.01, W = 6, Z = 128.
15} 10 100 1000 10000
ACC% | 93.72 93.94 94.82 93.72

Table 2. The effect ofy, 5 = 1000, W = 6, Z = 128.
« 0.1 0.05 0.01 0.005 0.001
ACC% | 92.62 92.84 94.82 93.39 93.17

s Table 3. The effect oV, o = 0.01, 8 = 1000, Z = 128.
Figure 4. The point clouds are reconstructed in (b)-(f) urdie w 1 3 6 12 S-6 R-6
ferenta compared in Tabl€l 2. ACC% | 92.95 93.39 94.82 93.17 93.39 92.95

Table 4. The effect of, « = 0.01, 8 = 1000, W = 6.
Z 32 64 128 256
ACC% | 93.28 94.16 94.82 93.94

results get better with decreasiaguntil « = 0.01 and

Figure 5. The original point clouds in (a) are reconstrudte(h)- degenerate when is too small. This observation demon-

(e) under differentV’ compared in Tablél 3. strates how enforcing a unit Gaussian distribution on the
latent vectorz too loosely or strictly affects the discrim-
inability of learned global features. We also visualize the

Training. We pre-train the global and local encoders in point clouds reconstructed by branBhunder differenty,

MAP-VAE respectively under the dataset involved in ex- 55 demonstrated in Fi§l 4. We find affects the recon-

periments in a self-reconstruction task, where the decodersyycted point clouds in a similar way to how it affects the

in PointNet++ [27] for segmentation is modified to work  giscriminability of learned global features. In the folimg

with our encoders to produce three dimensional point co- experiments, we set to 0.01.

ordinates in the last layer. After each PointNet++-based Subsequently, we explore how the number of angjies

autoencoder is trained, the pre-trained global and local en ¢ iy 4 training sample affects the performance of MAP-

coders are fixed for more efficient training of MAP-VAE. VAE, as shown in Table3, where several candidafe

In all experiments, we choose a more challenging way including {1, 3,6, 12} are employed. We findV’ = 6

to train MAP-VAE by all point clouds in multiple shape  achieves the best result, where fewer angles provide less

classes of a benchmark rather than a single shape clasggcal information while more angles increase redundancy.

where each point cloud h2948 points and each half has e also observe a similar phenomenon in the reconstruct-

N = 1024 points. In shape classification experiments, we eg point clouds shown in F[g.5. In addition, we also ex-

train a linear SVM to evaluate the raw discriminability of pjore other ways of distributing the” = 6 angles, such

the learned global featud . ~ as continuously (“S-6”) or randomly (“R-6"), respectively
Initially, we employV’ = 12 angles to analyze a point  We find our employed uniform placement is the best, since
cloud and form a training sample By” = 6 angles uni-  each training sample could cover the whole point cloud. In

formly covering the point cloud. We set balance parameter the following experiments, we us& = 6.

a = 0.01 and3 = 1000 to make each cost in the same  Finally, we explore the effect of thg-dimensional unit
order of magnitude. We usez = 128 dimensional unit  Gaussian distribution. In Tablgl 4, we compare the result-

Gaussian for the variational constraint. s obtained with differentZ, including {32, 64, 128, 256}.
Parameter setting. All experiments on parameter effect The results get better with increasidgintil Z = 128 while
exploration are conducted under ModelNe{I0 [37]. degenerating whe# is too big. We believeZ depends on

We first evaluate hows affects MAP-VAE by com- the number of training samples, and béthand 128 are
paring the results of differen candidates including good forZ under ModelNet10Z is set to 128 below.
{10,100, 1000, 10000}. As shown in Tabl&]1, the results Ablation study. We further explore how each module in
get better with increasing until 3 = 1000 and degenerate  MAP-VAE contributes to the performance. As shown in
whenj is too big. This observation demonstrates a proper Table[5, we remove a loss each time to highlight the corre-
range of8. We use = 1000 in the following experiments.  sponding module. The degenerated results indicate that all

Then, we evaluate how affects MAP-VAE by com-  elements contribute to the discriminability of learned-fea
paring the results of differentv candidates including tures, and self-reconstruction (“NR") contributes more
{0.1,0.05,0.01,0.005,0.001}. As shown in Tabl€12, the than the half-to-half prediction (“N&").



(b)

Figure 6. We show segmentation results from the airplaresdita(a) and the chair class in (b).

Table 5. Ablation study = 0.01,5 = 1000,/W = 6,7 = 128. Table 6. The classification accuracy{) comparison among un-
NoR NoP NoKL Al AE  VAE Eucli  supervised 3D feature learning methods under ModelNet4D an
% | 91.63 92.40 93.17 94.82 92.29 93.28 93.61 ModelNet10.ao = 0.01,8 = 1000,W = 6,7 = 128.

Methods Modality MN4@; MN10%
T-L Network[7] Voxel 74.40 -

In addition, we highlight our half-to-half prediction Vconv-DAE[3(] Voxel 75.50 80.50
by showing the results obtained only by the pre-trained 3DGANI[36] Voxel 83.30 91.00
global encoder in Fig]1 and this global encoder with a VSL[24] Voxel 84.50 91.00
variational constraint (using the same balance weights as VIPGAN][16] View 91.98 94.05
MAP-VAE), as shown by “AE” and “VAE". These results LGANIL] Points 85.70 95.30
show that half-to-half prediction can help MAP-VAE under- LGANI[L](MN) Points 87.27 92.18
stand point clouds better by leveraging effective locdt sel NSamplei[28] Points 88.70 95.30
supervision. Moreover, the lower result of “Euclid” alse in FNet[40] Points 88.40 94.40
dicates geodesic distance is superior to Euclidean distanc FNet[40](MN) Points 84.36 91.85
to obtain semantic front half in the splitting of a point atbu MRTNet[6] Points 86.40 -
Shape classificationWe evaluate MAP-VAE in shape clas- 3DCapsule[42] Points 88.90 -
sification by comparing it with state-of-the-art methods un PointGrow[33]  Points 85.80 -
der ModelNet40([37] and ModelNet10 [37]. All the com- PCGAN[21] Points 87.80 -

Our Points 90.15 94.82

pared methods perform unsupervised 3D feature learning
while using various 3D representations, including voxels,
views and point clouds. As shown in Talile 6, MAP-VAE
obtains the best performance among these methods undephape segmentation. We evaluate the local features
ModelNet10. We employ the same parameters involved learned by MAP-VAE for each pointin shape segmentation.
in Table[5 to produce our result under ModelNet40, where The ShapeNet part dataset [26] is employed in this experi-
MAP-VAE also outperforms all point cloud based methods. ment, where point clouds in 16 shape classes are involved
Although view-based VIPGAN is a little better than ours, to train MAP-VAE with the same parameters in Telble 6.

it cannot generate 3D shapes. These results indicate that We first extracted the learned feature of each point from
MAP-VAE learns more discriminative global features for the second-last layer in the global decodler Extracting
point clouds with the ability of leveraging more effective the feature of each single point in the decoding procedure
local self-supervision. Note that the results of LGAN, FNet represents the ability of MAP-VAE to understand shapes
and NSampler are trained under a version of ShapeNet53ocally at each point. Second, we map the ground truth label
that contains more than 57,000 3D shapes. However, thereof each point to the reconstructed point cloud by voting 5
are only 51,679 3D shapes from ShapeNet55 that are availnearest labels for each reconstructed point. Third, wa trai
able for public download. Therefore, MAP-VAE cannot be a per-point softmax classifier under the training set, asi te
trained under the same number of shapes. To perform fairthe classifier under the test set.

comparison, we use the codes of LGAN and FNet to pro- We use the same approach to obtain the results of the
duce their results under the same shapes in ModelNet, asutoencoder in LGAN]1], and this autoencoder with a vari-
shown by “LGAN(MN)” and “FNet(MN)". ational constraint. As the comparison shown in Table 7, our




Figure 7. Segmentation comparison between “LGAN” (a), “L-
GAN1” (b) in Table[J and MAP-VAE (c). The ground truth is
shown in (d). A color in the same row represents a part class.

Figure 8. Compared to the three generated class centers unde
P « " u s ModelNet10, MAP-VAE (in (c)) learns more local geometry de-
results significantly outperform “LGAN” and “LGAN1" in tails than “LGAN" (in (a)) and “LGANA1" (in (b)) in Tabl&T, due

ther visualize the segmentation comparison on four cases in

Fig.[4. We find that the captured local geometry information

helps MAP-VAE not only to reconstruct point clouds better,

but also to learn more discriminative features for eachtpoin

for better segmentation. Finally, we show 100 segmentation

results in two challenging shape classes, respectively, i.

results also justify the good performance of MAP-VAE. !

Shape generation.Next we demonstrate how to generate - N - e

novel shapes using the trained MAP-VAE. Here, we first

sample a noise vector from the employgedimensional

unit Gaussian distribution, and then, convey the noisedo th

global decodeb in branchR in Fig.[1. A

and|W|th h(ljghlvfllde“ty’ where lmoreblocal ghgorr]n etryl_tt'ietall_s t Figure 9. Visual comparison with “LGAN” (in (b)) in Tablg 7 dn

are learne oreover, we also observe high quality point.pen gpp- (in (c)) in Table[® for the completion of partial pd

der ShapeNet part dataset in Table 7. We generate 100 air-

planes using 100 noise vectors sampled around the feature

center of the airplane class, as demonstrated ir Flg. 10 (b).  Finally, we visually highlight the advantage of MAP-
polated features between two feature centers of two shapehape class. As demonstrated in Eig. 8, we compare MAP-
classes, where the MAP-VAE trained under ModelNet10 in VAE with the autoencoder in LGAN]1], and this autoen-
Table[® is used. The interpolated point clouds are plausiblecoder with a variational constraint. Using the trained de-
another center in Fig._11 (a) and (b). Similar results can befeature center at each of the three shape classes. Compared
observed by interpolations between two shapes in the saméo the three class centers in Fig. 8 (a) and Eig. 8 (b), MAP-
class in Fig[Ill (c) and (d), where the MAP-VAE trained VAE in Fig.[8 (c) can generate point clouds with more local

terms of both mloU and classification accuracy. We fur- to the effective local self-supervision in half-to-halegiction.
airplane and chair, in Fig]6. The consistent segmentation

Using MAP-VAE trained under ModelNet10 in Taljle 6,
we generate some novel shapes in each of 10 shape class-
es in Fig[I0 (a), where we sample 4 noise vectors around
the feature center of each shape class to generate 4 shape )
class specific shapes. The generated point clouds are sharg l 4 ] J p o
clouds in the same shape class from MAP-VAE trained un- o ,4s (a). MAP-VAE (in (d)) completes more geometry datail

We further show the point clouds generated by the inter- VAE by the point cloud generated at the feature center of a
and meaningful, and smoothly changed from one center tocoder of each method, we generate a point cloud from the
under ShapeNet part dataset in TdBle 7 is used. geometry details, such as sharp edges of parts.



Table 7. The segmentation comparison among unsuperviseig@a@Dre learning methods under ShapeNet part dataset. €t&crs

mloU(%) and per-point classification accura@)(on points.a = 0.01,3 = 1000,W = 6,7 = 128.

Methods | Mean| Aero  Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mugist®d Rocket Skate Table
LGAN[I] | 57.04| 54.13 48.67 6255 43.24 68.37 5834 7427 68.38 53.35 82.68.601 75.08 54.70 37.17 46.71 66.39
LGAN1[I] | 56.28| 52.16 57.85 62.66 42.01 67.66 52.25 75.37 68.63 49.07 81.58.201 7543 54.34 35.09 4148 65.73

Ours 67.95| 62.73 67.08 7295 5845 77.09 67.34 8483 77.07 60.89 90.85.823 87.73 64.24 4497 60.36 74.75

LGANI] | 78.24| 74.93 84.36 77.02 71.10 7823 7834 8441 78.29 69.05 86.86.936 90.42 8195 6844 8227 78.25

LGAN1[I] | 77.35| 73.64 84.05 7593 69.82 77.35 77.45 8372 78.10 68.45 85.85.066 89.69 81.43 67.59 8110 77.33
Ours 87.45| 83.50 93.79 86.12 83.28 87.03 88.08 93.15 86.66 79.31 94.89.377 98.86 90.51 77.14 93.21 86.25

ACC | mloU

S355EE
+ 4+ 4+ 4 & &K

Figure 11. We show shape interpolation results between fifereht shape classes under ModelNet10 in (a) and (b), hacshape
interpolation results between two shapes in the same chales the ShapeNet part dataset in (c) and (d).

Table 8. The completion comparison under airplane and classes in terms of EMD/point; = 0,5 = 1000,/W = 12,Z = 0.
Class EPN[3] Folding[40] PCN-CD[41] PCN-EMD[41] LGANI1] Our
Airplane | 0.061960 0.156438 0.046637 0.038752 0.033218032328
Chair 0.076802 0.297427 0.086787 0.068074 0.0559aB055696

Point cloud completion. MAP-VAE can also be used in  where MAP-VAE completes more local geometry details.

point cloud completion, where we st = 12 and remove

the KL loss for fair comparison. We evaluate our perfor-

mance under the training and test sets of partial point eloud 7. Conclusions

s in two challenging shape classeslin [3], i.e., airplane and

chair, where we employ the complete point clouds’in [26]  We propose MAP-VAE for unsupervised 3D point cloud

as ground truth. Since each partial point cloud has differen feature learning by jointly leveraging local and globaFsel

t number of points, we resample 2048 points to obtain the supervision. MAP-VAE effectively learns local geometry

front and back halves. We compare with the state-of-the-artand structure on point clouds from semantic local self-

methods in Tablg]8. The lowest EMD distance shows that supervision provided by our novel multi-angle analysis.

MAP-VAE outperforms all competitors. In addition, we al- The outperforming results in various applications shovt tha

so visually compare the completed point clouds in Elg. 9, MAP-VAE successfully learns more discriminative global
or local features for point clouds than state-of-the-art.



References

(1]

(2]

P. Achlioptas, O. Diamanti, |. Mitliagkas, and L. J. Ga®
Learning representations and generative models for 30X poin
clouds. InThe International Conference on Machine Learn-
ing, pages 40-49, 2018.

K. Crane, C. Weischedel, and M. Wardetzky. The heat
method for distance computationCommunications of the
ACM, 60(11):90-99, 2017.

[3] A. Dai, C. R. Qi, and M. Nie3ner. Shape completion us-

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

ing 3D-encoder-predictor cnns and shape synthesi&EHE
Conference on Computer Vision and Pattern Recognition
2017.

H. Deng, T. Birdal, and S. llic. PPF-FoldNet: Unsupeeds
learning of rotation invariant 3D local descriptors. Fno-
ceedings of European Conference on Computer Vjsioh
ume 11209, pages 620-638, 2018.

H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3D object reconstruction from a single image. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2463-2471, 2017.

M. Gadelha, R. Wang, and S. Maji. Multiresolution tre¢-ne
works for 3D point cloud processing. ECCV, 2018.

R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representati
for objects. InProceedings of European Conference on Com-
puter Vision pages 484—499, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. kdvances in Neural Information
Processing Systems 2¥ages 2672-2680. 2014.

Z. Han, X. Liu, Y.-S. Liu, and M. Zwicker. Parts4Feature:
Learning 3D global features from generally semantic parts i
multiple views. InIJCAI, 2019.

Z.Han, Z. Liu, J. Han, C. Vong, S. Bu, and C. Chen. Unsu-
pervised learning of 3D local features from raw voxels based
on a novel permutation voxelization stratetiyEE Transac-
tions on Cybernetics19(2):481-494, 2019.

Z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, and C. Chen.
Mesh convolutional restricted boltzmann machines for un-
supervised learning of features with structure presesmati
on 3D mesheslEEE Transactions on Neural Network and
Learning System28(10):2268 — 2281, 2017.

Z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, and X. Li. Un-
supervised 3D local feature learning by circle convolution
restricted boltzmann machinéEEE Transactions on Image
Processing25(11):5331-5344, 2016.

Z. Han, Z. Liu, C. Vong, Y.-S. Liu, S. Bu, J. Han,
and C. Chen. Deep Spatiality: Unsupervised learning of
spatially-enhanced global and local 3D features by deep neu
ral network with coupled softmax|EEE Transactions on
Image Processing?27(6):3049-3063, 2018.

Z. Han, Z. Liu, C.-M. Vong, Y.-S. Liu, S. Bu, J. Han, and
C. Chen. BoSCC: Bag of spatial context correlations for spa-
tially enhanced 3D shape representati®#EE Transactions

on Image Processin@6(8):3707-3720, 2017.

Z.Han, H. Lu, Z. Liu, C.-M. Vong, Y.-S. Liu, M. Zwicker,

J. Han, and C. P. Chen. 3D2SeqViews: Aggregating sequen-

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

tial views for 3d global feature learning by cnn with hierar-
chical attention aggregationlEEE Transactions on Image
Processing28(8):3986—3999, 2019.

Z. Han, M. Shang, Y.-S. Liu, and M. Zwicker. View Inter-
Prediction GAN: Unsupervised representation learning for
3D shapes by learning global shape memories to support lo-
cal view predictions. IAAAI 2019.

Z.Han, M. Shang, Z. Liu, C.-M. Vong, Y.-S. Liu, M. Zwick-
er, J. Han, and C. P. Chen. SeqViews2SegLabels: Learning
3D global features via aggregating sequential views by rn-
n with attention. IEEE Transactions on Image Processing
28(2):1941-0042, 2019.

Z. Han, M. Shang, X. Wang, Y.-S. Liu, and M. Zwick-
er. Y2Seq2Seq: Cross-modal representation learning for 3D
shape and text by joint reconstruction and prediction ofivie
and word sequences. AAAI 2019.

Z. Han, X. Wang, C.-M. Vong, Y.-S. Liu, M. Zwicker, and
C. P. Chen. 3DViewGraph: Learning global features for 3d
shapes from a graph of unordered views with attention. In
1IJCAI, 2019.

D. P. Kingma and M. Welling. Auto-encoding variational
bayes.CoRR abs/1312.6114, 2013.

C.-L. Li, M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhut
dinov. Point cloud GAN.CoRR abs/1810.05795, 2018.

J. Li, B. M. Chen, and G. H. Lee. SO-Net: Self-organizing
network for point cloud analysis. IRroceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
pages 9397-9406. IEEE Computer Society, 2018.

Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. PointCN-
N: Convolution on x-transformed points. NeurlPS pages
828-838, 2018.

S. Liu, C. L. Giles, and A. G. O. Il. Learning a hierarcaic
latent-variable model of 3D shapes. 2018 International
Conference on 3D Vision (3DV2018.

X. Liu, Z. Han, Y. Liu, and M. Zwicker. Point2Sequence:
Learning the shape representation of 3D point clouds with an
attention-based sequence to sequence netwakldl, 2019.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep
learning on point sets for 3D classification and segmemiatio
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017.

C. R. Qi, L. Vi, H. Su, and L. J. Guibas. PointNet++:
Deep hierarchical feature learning on point sets in a metric
space. InAdvances in Neural Information Processing Sys-
tems pages 5105-5114, 2017.

E. Remelli, P. Baque, and P. Fua. NeuralSampler: Eu-
clidean point cloud auto-encoder and sampl&oRR ab-
s/1901.09394, 2019.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's
distance as a metric for image retrieviiternational Jour-

nal of Computer Visionp40(2):99-121, 2000.

A. Sharma, O. Grau, and M. Fritz. VConv-DAE: Deep volu-
metric shape learning without object labels.Aroceedings

of European Conference on Computer Visipages 236—
250, 2016.

Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud
local structures by kernel correlation and graph pooling. |



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognitiqrpages 4548-4557, 2018.

M. Shoef, S. Fogel, and D. Cohen-Or. PointWise:an un-
supervised point-wise feature learning netwo@oRR ab-
s/1901.04544, 2019.

Y. Sun, Y. Wang, Z. Liu, J. E. Siegel, and S. E. Sarma. Roin
Grow: Autoregressively learned point cloud generatiorhwit
self-attention.CoRR abs/1810.05591, 2018.

D. Valsesia, G. Fracastoro, and E. Magli. Learning lizeal
generative models for 3D point clouds via graph convolu-
tion. In International Conference on Learning Representa-
tions 2019.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph CNN for learning on point
clouds.CoRR abs/1801.07829, 2018.

J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapesDia 3
generative-adversarial modeling. Aavances in Neural In-
formation Processing Systenmmages 82-90. 2016.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3D ShapeNets: A deep representation for volumetric
shapes. IProceedings of IEEE Conference on Computer
Vision and Pattern Recognitippages 1912-1920, 2015.

S. Xie, S. Liu, Z. Chen, and Z. Tu. Attentional shapecon-
textnet for point cloud recognition. IRroceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 46064615, 2018.

Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. SpiderCNN:
Deep learning on point sets with parameterized convolution
al filters. INECCV, volume 11212, pages 90-105, 2018.

Y. Yang, C. Feng, Y. Shen, and D. Tian. FoldingNet: Point
cloud auto-encoder via deep grid deformationlHEE Con-
ference on Computer Vision and Pattern RecognjtRoi8.

W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. PCN:
Point completion network. IRProceedings of 2018 Interna-
tional Conference on 3D Visior2018.

Y. Zhao, T. Birdal, H. Deng, and F. Tombari. 3D point-
capsule networksCoRR abs/1812.10775, 2018.



