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Abstract

Unsupervised feature learning for point clouds has been
vital for large-scale point cloud understanding. Recen-
t deep learning based methods depend on learning global
geometry from self-reconstruction. However, these methods
are still suffering from ineffective learning of local geome-
try, which significantly limits the discriminability of learned
features. To resolve this issue, we propose MAP-VAE to
enable the learning of global and local geometry by joint-
ly leveraging global and local self-supervision. To enable
effective local self-supervision, we introduce multi-angle
analysis for point clouds. In a multi-angle scenario, we
first split a point cloud into a front half and a back half
from each angle, and then, train MAP-VAE to learn to pre-
dict a back half sequence from the corresponding front half
sequence. MAP-VAE performs this half-to-half prediction
using RNN to simultaneously learn each local geometry and
the spatial relationship among them. In addition, MAP-VAE
also learns global geometry via self-reconstruction, where
we employ a variational constraint to facilitate novel shape
generation. The outperforming results in four shape analy-
sis tasks show that MAP-VAE can learn more discriminative
global or local features than the state-of-the-art methods.

1. Introduction

Point clouds have become a popular 3D representation in
machine vision, autonomous driving, and augmented reali-
ty, because they are easy to acquire and manipulate. There-
fore, point cloud analysis has emerged as a crucial prob-
lem in the area of 3D shape understanding. With the help
of extensive supervised information, recent deep learning

∗Corresponding Author. This work was supported by National Key
R&D Program of China (2018YFB0505400) and NSF (award 1813583).

based feature learning techniques have achieved unprece-
dented results in classification, detection and segmenta-
tion [27, 31, 22, 35, 23, 39]. However, supervised learning
requires intense manual labeling effort to obtain supervised
information. Therefore, unsupervised feature learning isan
attractive alternative and a promising research challenge.

Several studies have tried to adress this challenge [1, 21,
4, 34, 33, 42, 32]. To learn the structure of a point cloud
without additional supervision, these generative models are
trained by self-supervision, such as self-reconstruction[1,
4, 6, 42, 33, 32] or distribution approximation [1, 21, 34],
which is implemented by auto-encoder or generative ad-
versarial networks [8] respectively. To capture finer glob-
al structure, some methods [34, 33, 42, 32] first learn local
structure information in point cloud patches based on which
the global point cloud is then reconstructed. Because of
lacking effective and semantic local structure supervision,
however, error may accumulate in the local structure learn-
ing process, which limits the network’s ability in 3D point
cloud understanding.

To resolve this issue, we propose a novel deep learn-
ing model for unsupervised point cloud feature learning by
simultaneously employing effective local and global self-
supervision. We introduce multi-angle analysis for point
clouds to mine effective local self-supervision, and com-
bine it with global self-supervision under a variational con-
straint. Hence we call our model Multi-Angle Point Cloud
Variational Auto-Encoder (MAP-VAE). Specifically, to em-
ploy local self-supervision, MAP-VAE first splits a point
cloud into a front half and a back half under each of sev-
eral incrementally varying angles. Then, MAP-VAE per-
forms half-to-half prediction to infer a sequence of several
back halves from the corresponding sequence of the com-
plementary front halves. Half-to-half prediction aims to
capture the geometric and structural information of local
regions on the point cloud through varying angles. More-



over, by leveraging global self-supervision, MAP-VAE con-
ducts self-reconstruction in company with each half-to-half
prediction to capture the geometric and structural informa-
tion of the whole point cloud. Self-reconstruction is started
from a variational feature space, which enables MAP-VAE
to generate new shapes by capturing the distribution infor-
mation over training point clouds in the feature space. In
summary, our contributions are as follows:

i) We propose MAP-VAE to perform unsupervised fea-
ture learning for point clouds. It can jointly leverage
effective local and global self-supervision to learn fine-
grained geometry and structure of point clouds.

ii) We introduce multi-angle analysis for point cloud
understanding, which provides semantic local self-
supervision to learn local geometry and structure.

iii) We provide a novel way to consistently split point
clouds into semantic regions according to view angles,
which enables the exploration of the fine-grained dis-
criminative information of point cloud regions.

2. Related work

Deep learning models have led to significant progress in
feature learning for 3D shapes [12, 11, 14, 13, 17, 18, 9,
19, 15, 10]. Here, we focus on reviewing studies on point
clouds. For supervised methods, supervised information,
such as shape class labels or segmentation labels, are re-
quired to train deep learning models in the feature learning
process. In contrast, unsupervised methods are designed
to mine self-supervision information from point clouds for
training, which eliminates the need for supervised informa-
tion that can be tedious to obtain. We briefly review the
state-of-the-art methods in these two categories as follows.
Supervised feature learning.As a pioneering work, Point-
Net [26] was proposed to directly learn features from point
clouds by deep learning models. However, PointNet is lim-
ited in capturing contextual information among points. To
resolve this issue, various techniques were proposed to es-
tablish graph in a local region to capture the relationship a-
mong points in the region [31, 22, 35, 23, 39]. Furthermore,
multi-scale analysis [27] was introduced to extract more se-
mantic features from the local region by separating points
into scales or bins, and then, aggregating these features by
concatenation [38] or RNN [25]. These methods require su-
pervised information in the feature learning process, which
is different from unsupervised approach in MAP-VAE.
Unsupervised feature learning. An intuitive approach
to mine self-supervised information is to perform self-
reconstruction which first encodes a point cloud into a fea-
ture and then decodes the feature back to a point cloud.
Such global self-supervision is usually implemented by an
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Figure 1. The framework of MAP-VAE.

autoencoder network [1, 4, 42, 33, 32]. With the help of ad-
versarial training, a different kind of global self-supervision
is employed to train the network to generate plausible point
clouds by learning a mapping from a known distribution
to the unknown distribution that the point clouds are sam-
pled from [1, 21, 34]. For finer global structure infor-
mation, some methods take a step further to jointly em-
ploy local structure information captured in local region-
s [34, 33, 42, 32]. These methods first learn local structure
information in point cloud patches by clustering [42], con-
ditional point distribution [33], graph convolution [34],or
fully connected layers [32], based on which the whole point
cloud is then reconstructed. However, because of lacking
effective and semantic local structure supervision, this pro-
cess is prone to error accumulation in the local structure
learning process, which limits the network’s ability in point
cloud understanding. To resolve this issue, MAP-VAE in-
troduces multi-angle analysis for point clouds, which pro-
vides effective and semantic local self-supervision. MAP-
VAE can also simultaneously employ local and global self-
supervision, which further differentiates it from others.

3. Overview

To jointly leverage local and global self-supervision to
learn features from point clouds, MAP-VAE simultaneous-
ly conducts half-to-half prediction and self-reconstruction
by three branches, i.e., which we call aggregation branch
A, reconstruction branchR, and prediction branchP, as il-
lustrated in Fig. 1. Specifically, branchA and branchP
together perform the half-to-half prediction while branchA
and branchR together perform the self-reconstruction.

A training sampleTi provided to MAP-VAE to learn is
formed by a front half sequenceSF , a back half sequence
S
B, and an original point cloudM . The corresponding ele-

ments in sequencesSF andSB are a front halfmF
v (in red)

and its complementary back halfmB
v (in green) which are

obtained by splitting the original point cloudM (in blue)
from a specific anglev.

The aggregation branchA encodes the geometry of local
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Figure 2. (a) Geodesic splittingM into a front halfmF

v (in red)
and a back halfmB

v (in green) from thev-th angle. (b)M is fur-
ther split from allV angles located aroundM in clockwise order,
where subset withW = 3 out ofV angles (indicated by dotted or
solid line) are selected to establish a half-to-half sequence pair. (c)
The training sampleTi from each one ofV angles.

point clouds and their spatial relationship by aggregating
all front halves in sequenceSF in order. It first extracts
the low-level featuref of the original point cloudM and
the low-level featurefF

v of each front halfmF
v by a global

encoder and a local encoder, respectively. Then, it learns the
angle-specific featurehi of M by aggregating all low-level
featuresfF

v using an aggregation RNNUA.
The reconstruction branchR performs self-

reconstruction by decoding the learned angle-specific
featurehi into a point cloudM . This reconstruction is
conducted by a global decoderD which tries to generate
M as similar as possible toM . In addition,R employs a
variational constraint to facilitate novel shape generation.

At the same time, the prediction branchP performs half-
to-half prediction by decoding the learned angle-specific
featurehi into a back half sequenceSB which is paired
with the corresponding front half sequenceS

F . This pre-
diction is conducted by a prediction RNNUP which tries to
predict the sequenceSB as similar as possible toSB.

4. Multi-angle splitting

Multi-angle splitting. A key idea in MAP-VAE is a novel
multi-angle analysis for point coulds to mine effective local
self-supervision. Intuitively, observing a point cloud from
different angles, explicitly presents the correspondences
and relationships among different shape regions, given as
the correspondence between the front and back halves of
the shape in each view. Our multi-angle analysis provides
multiple regions (front halves) of the point cloud as in-
put, from which the corresponding missing regions (back
halves) need to be inferred. This encourages MAP-VAE
to learn a detailed shape representation that facilitates high
quality classification, segmentation, shape synthesis, and
point cloud completion.

We achieve this by splitting a point cloud into a front

(a) (b) (c)

Figure 3. The comparison of front halves (red parts in (a) and(c))
split by Euclidean distance and geodesic distance (map in (b)).

and a back half from different angles, where the front half
is the half nearer to the viewpoint than the back half. This
enables MAP-VAE to observe different semantic parts of
a point cloud, and it also preserves the spatial relationship
among the parts by incrementally varying angles.

For a point cloudM , we splitM from V different an-
gles into front halves (in red) and their complementary back
halves (in green), as shown in Fig. 2 (b), where the view-
points are located aroundM on a circle. From thev-th
viewpoint,M is split into a front halfmF

v and a back half
mB

v in Fig. 2 (a), wheremF
v is formed by theN nearest

points (in red) ofM to the viewpoint whilemB
v is formed

by theN farthest points (in green) to the viewpoint.
Geodesic splitting. A naive way of finding theN nearest
points to define a front halfmF

v is to sort all points onM
by the Euclidean distance between each point and the view-
point. However, on some point clouds, this method may not
produce semantic front halves, since the regions in a front
half are not continuous, as demonstrated in Fig. 3 (a). It is
important to encode semantic front halves, since this would
help MAP-VAE to seamlessly understand the entire surface
from a viewpoint under a multi-angle scenario.

To resolve this issue, we leverage the geodesic distance
on the point cloud [2] to sort the points. Specifically, we
first find a nearest pointu to thev-th viewpoint onM by
Euclidean distance. Then, we sort the rest of points onM in
terms of their geodesic distances to the found nearest point
u, as shown by the geodesic map in Fig. 3 (b). Finally,u

and its nearestN − 1 points form the front halfmF
v , while

the farthestN points form the back halfmB
v , as illustrated

by the red part and green part in Fig. 3 (c), respectively.
Half-to-half sequence pairs. To leverage the correspon-
dence between front half and back half and their spatial re-
lationship under different angles, we establish a half-to-half
sequence pair starting from each one of theV angles.

Along the circle direction of varying angles, as illustrat-
ed by the clockwise green arrow in Fig. 2 (b), we select front
halvesmF

v and their complementary back halvesmB
v from

W out of theV angles. The selectedmF
v form a front half

sequenceSF while the complementarymB
v form a back

half sequenceSB , whereSF = [mF
v |v ∈ [1, V ], |v| = W ],

S
B = [mB

v |v ∈ [1, V ], |v| = W ] and each element inSF

corresponds to its complementary element inS
B. Thus, a

half-to-half sequence pair(SF ,SB) consists ofSF andSB.
To comprehensively observe the point cloud, we select

W angles which uniformly cover the whole shape in each



half-to-half sequence pair(SF ,SB). As demonstrated by
the dotted lines in Fig. 2 (b), we selectW = 3 angles in
order to form the first(SF ,SB), and then, along the green
arrow, we form the last(SF ,SB) by angles indicated by
the solid lines. Each(SF ,SB) forms a training sampleTi

in company with the point cloudM . Finally, we obtain all
V training samples{Ti|i ∈ [1, V ]} fromM in Fig. 2 (c).

5. MAP-VAE

Aggregation branch A. For a training sampleTi con-
taining a half-to-half sequence pair(SF ,SB) and the point
cloudM , aggregation branchA encodes the global geome-
try of M , local geometry of each one ofW m

F
v in S

F , and
the spatial relationship amongmF

v . Aggregation branchA
first extracts the geometry of each involved point cloud into
a low-level feature by encoder, and then, aggregates all the
low-level features with their spatiality by aggregation RNN
UA. Specifically, we extract the low-level featuref of 2N
points onM by a global encoder, and the low-level feature
fF
v of N points onmF

v by a local encoder. Both the glob-
al and local encoders employ the same architecture as the
encoder in PointNet++ [27], the only difference is the input
number of points. Subsequently, aggregation RNNUA ag-
gregatesf and allfF

v in W + 1 steps, where we employ
GRU cell with512 hidden state. Finally, we use the hidden
state as the angle-specific featurehi of M since the first
front half inSF is observed starting from thei-th angle.
Reconstruction branchR. By decoding the learned angle-
specific featurehi, reconstruction branchR tries to generate
a point cloudM as similar as possible to the original point
cloudM by a global decoderD. D is formed by 3 fully con-
nected layers (1024-2048-6114) and 2 convolutional layers
(with 256 and 31×1 kernels each), where batch normaliza-
tion is used between every two layers. Here, we prefer Earth
Movers distance (EMD) [29] to Chamfer Distance (CD) [5]
to evaluate the distance between the reconstructedM and
the originalM , since EMD is more faithful than CD to the
visual quality of point clouds[1]. The EMD distance be-
tweenM andM is regarded as the cost of reconstruction
to optimize, as defined below, whereφ is a bijection from a
pointx onM to its corresponding pointφ(x) onM ,

CD = min
φ:M→M

∑

x∈M

‖x− φ(x)‖2. (1)

In addition, we employ a variational constraint [20] in
reconstruction branchR to facilitate novel shape genera-
tion. This is implemented by a variational reparameteri-
zation process, as shown in Fig. 1. The variational repa-
rameterization transforms the angle-specific featurehi into
another latent vectorz that roughly follows a unit multi-
dimensional Gaussian distribution. After training, branch
R can generate a novel shape by sampling a latent vector
from the unit Gaussian to the global decoderD.

Specifically, the variational reparameterization first em-
ploys fully connected layers to respectively estimate the
meanµ and varianceσ for the distribution ofhi. Then,
a noise vectorε is sampled from a unit multi-dimensional
Gaussian distributionN (0,1), asε ∼ N (0,1) andε ∈
R1×Z . Finally, we scale the noiseε byσ and further shift it
byµ, such that the latent vectorz = µ+ ε⊙ σ. The vari-
ational reparameterization enables reconstruction branchR
to push the distributionq(z|hi) to follow the unit multi-
dimensional Gaussian distribution by minimizing the KL
divergence between the distributionq(z|hi) andN (0,1).

Thus, the cost of reconstruction branchR is defined
based on Eq. (1) below, whereα is a balance parameter.

CR = CD + α×KL(q(z|hi)||N (0,1)). (2)

Prediction branch P. Similar to reconstruction branchR,
prediction branch P decodes the learned angle-specific fea-
turehi to predict the back half sequenceSB corresponding
to S

F . BranchP tries to predict a back half sequenceSB

as similar as possible toSB by a prediction RNNUP. At
each ofW steps,UP predicts one back halfmB

v in the same
order of elements inSB. This enablesUP to learn the half-
to-half correspondence and the spatial relationship among
the halves ofM . To further push MAP-VAE to compre-
hensively understand the point cloud,UP predicts the low-
level featurefB

v of each one ofW back halfmB
v rather than

the spatial point coordinates ofmB
v , which is complemen-

tary to reconstruction branchR. The ground truth low-level
featurefB

v of mB
v is also extracted by the local encoder in

branchA. Thus, the cost of branchP is defined as follows,

CP =
1

W
×

∑

v∈[1,V ],|v|=W

‖fB
v − fB

v ‖22. (3)

Objective function. For a sampleTi, MAP-VAE is trained
by minimizing all the aforementioned costs of each branch,
as defined below, whereβ is a balance parameter.

min CR + β × CP. (4)

After training, MAP-VAE represents the point cloudM
as a global featureH by aggregating the angle-specific fea-
turehi learned from each sampleTi of M using max pool-
ing, such thatH = Pooli∈[1,V ]{hi}.

6. Experimental results and analysis

In this section, we first explore how the parameters in-
volved in MAP-VAE affect the discriminability of learned
global features in shape classification. Then, MAP-VAE is
evaluated in shape classification, segmentation, novel shape
generation, and point cloud completion by comparing with
state-of-the-art methods.
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Figure 4. The point clouds are reconstructed in (b)-(f) under dif-
ferentα compared in Table. 2.
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Figure 5. The original point clouds in (a) are reconstructedin (b)-
(e) under differentW compared in Table. 3.

Training. We pre-train the global and local encoders in
MAP-VAE respectively under the dataset involved in ex-
periments in a self-reconstruction task, where the decoder
in PointNet++ [27] for segmentation is modified to work
with our encoders to produce three dimensional point co-
ordinates in the last layer. After each PointNet++-based
autoencoder is trained, the pre-trained global and local en-
coders are fixed for more efficient training of MAP-VAE.

In all experiments, we choose a more challenging way
to train MAP-VAE by all point clouds in multiple shape
classes of a benchmark rather than a single shape class,
where each point cloud has2048 points and each half has
N = 1024 points. In shape classification experiments, we
train a linear SVM to evaluate the raw discriminability of
the learned global featureH .

Initially, we employV = 12 angles to analyze a point
cloud and form a training sample byW = 6 angles uni-
formly covering the point cloud. We set balance parameter
α = 0.01 andβ = 1000 to make each cost in the same
order of magnitude. We use aZ = 128 dimensional unit
Gaussian for the variational constraint.
Parameter setting. All experiments on parameter effect
exploration are conducted under ModelNet10 [37].

We first evaluate howβ affects MAP-VAE by com-
paring the results of differentβ candidates including
{10, 100, 1000, 10000}. As shown in Table 1, the results
get better with increasingβ until β = 1000 and degenerate
whenβ is too big. This observation demonstrates a proper
range ofβ. We useβ = 1000 in the following experiments.

Then, we evaluate howα affects MAP-VAE by com-
paring the results of differentα candidates including
{0.1, 0.05, 0.01, 0.005, 0.001}. As shown in Table 2, the

Table 1. The effect ofβ, α = 0.01, W = 6, Z = 128.
β 10 100 1000 10000

ACC% 93.72 93.94 94.82 93.72

Table 2. The effect ofα, β = 1000, W = 6, Z = 128.
α 0.1 0.05 0.01 0.005 0.001

ACC% 92.62 92.84 94.82 93.39 93.17

Table 3. The effect ofW , α = 0.01, β = 1000, Z = 128.
W 1 3 6 12 S-6 R-6

ACC% 92.95 93.39 94.82 93.17 93.39 92.95

Table 4. The effect ofZ, α = 0.01, β = 1000, W = 6.
Z 32 64 128 256

ACC% 93.28 94.16 94.82 93.94

results get better with decreasingα until α = 0.01 and
degenerate whenα is too small. This observation demon-
strates how enforcing a unit Gaussian distribution on the
latent vectorz too loosely or strictly affects the discrim-
inability of learned global features. We also visualize the
point clouds reconstructed by branchR under differentα,
as demonstrated in Fig. 4. We findα affects the recon-
structed point clouds in a similar way to how it affects the
discriminability of learned global features. In the following
experiments, we setα to 0.01.

Subsequently, we explore how the number of anglesW

of in a training sample affects the performance of MAP-
VAE, as shown in Table. 3, where several candidateW

including {1, 3, 6, 12} are employed. We findW = 6
achieves the best result, where fewer angles provide less
local information while more angles increase redundancy.
We also observe a similar phenomenon in the reconstruct-
ed point clouds shown in Fig.5. In addition, we also ex-
plore other ways of distributing theW = 6 angles, such
as continuously (“S-6”) or randomly (“R-6”), respectively.
We find our employed uniform placement is the best, since
each training sample could cover the whole point cloud. In
the following experiments, we useW = 6.

Finally, we explore the effect of theZ-dimensional unit
Gaussian distribution. In Table. 4, we compare the result-
s obtained with differentZ, including {32, 64, 128, 256}.
The results get better with increasingZ untilZ = 128while
degenerating whenZ is too big. We believeZ depends on
the number of training samples, and both64 and128 are
good forZ under ModelNet10.Z is set to 128 below.
Ablation study. We further explore how each module in
MAP-VAE contributes to the performance. As shown in
Table. 5, we remove a loss each time to highlight the corre-
sponding module. The degenerated results indicate that all
elements contribute to the discriminability of learned fea-
tures, and self-reconstruction (“NoR”) contributes more
than the half-to-half prediction (“NoP”).
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Table 5. Ablation study,α = 0.01,β = 1000,W = 6,Z = 128.
No R No P No KL All AE VAE Eucli

% 91.63 92.40 93.17 94.82 92.29 93.28 93.61

In addition, we highlight our half-to-half prediction
by showing the results obtained only by the pre-trained
global encoder in Fig. 1 and this global encoder with a
variational constraint (using the same balance weights as
MAP-VAE), as shown by “AE” and “VAE”. These results
show that half-to-half prediction can help MAP-VAE under-
stand point clouds better by leveraging effective local self-
supervision. Moreover, the lower result of “Euclid” also in-
dicates geodesic distance is superior to Euclidean distance
to obtain semantic front half in the splitting of a point cloud.
Shape classification.We evaluate MAP-VAE in shape clas-
sification by comparing it with state-of-the-art methods un-
der ModelNet40 [37] and ModelNet10 [37]. All the com-
pared methods perform unsupervised 3D feature learning
while using various 3D representations, including voxels,
views and point clouds. As shown in Table 6, MAP-VAE
obtains the best performance among these methods under
ModelNet10. We employ the same parameters involved
in Table 5 to produce our result under ModelNet40, where
MAP-VAE also outperforms all point cloud based methods.
Although view-based VIPGAN is a little better than ours,
it cannot generate 3D shapes. These results indicate that
MAP-VAE learns more discriminative global features for
point clouds with the ability of leveraging more effective
local self-supervision. Note that the results of LGAN, FNet
and NSampler are trained under a version of ShapeNet55
that contains more than 57,000 3D shapes. However, there
are only 51,679 3D shapes from ShapeNet55 that are avail-
able for public download. Therefore, MAP-VAE cannot be
trained under the same number of shapes. To perform fair
comparison, we use the codes of LGAN and FNet to pro-
duce their results under the same shapes in ModelNet, as
shown by “LGAN(MN)” and “FNet(MN)”.

Table 6. The classification accuracy (%) comparison among un-
supervised 3D feature learning methods under ModelNet40 and
ModelNet10.α = 0.01,β = 1000,W = 6,Z = 128.

Methods Modality MN40% MN10%
T-L Network[7] Voxel 74.40 -
Vconv-DAE[30] Voxel 75.50 80.50

3DGAN[36] Voxel 83.30 91.00
VSL[24] Voxel 84.50 91.00

VIPGAN[16] View 91.98 94.05
LGAN[1] Points 85.70 95.30

LGAN[1](MN) Points 87.27 92.18
NSampler[28] Points 88.70 95.30

FNet[40] Points 88.40 94.40
FNet[40](MN) Points 84.36 91.85

MRTNet[6] Points 86.40 -
3DCapsule[42] Points 88.90 -
PointGrow[33] Points 85.80 -
PCGAN[21] Points 87.80 -

Our Points 90.15 94.82

Shape segmentation. We evaluate the local features
learned by MAP-VAE for each point in shape segmentation.
The ShapeNet part dataset [26] is employed in this experi-
ment, where point clouds in 16 shape classes are involved
to train MAP-VAE with the same parameters in Table 6.

We first extracted the learned feature of each point from
the second-last layer in the global decoderD. Extracting
the feature of each single point in the decoding procedure
represents the ability of MAP-VAE to understand shapes
locally at each point. Second, we map the ground truth label
of each point to the reconstructed point cloud by voting 5
nearest labels for each reconstructed point. Third, we train
a per-point softmax classifier under the training set, and test
the classifier under the test set.

We use the same approach to obtain the results of the
autoencoder in LGAN [1], and this autoencoder with a vari-
ational constraint. As the comparison shown in Table 7, our
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Figure 7. Segmentation comparison between “LGAN” (a), “L-
GAN1” (b) in Table 7 and MAP-VAE (c). The ground truth is
shown in (d). A color in the same row represents a part class.

results significantly outperform “LGAN” and “LGAN1” in
terms of both mIoU and classification accuracy. We fur-
ther visualize the segmentation comparison on four cases in
Fig. 7. We find that the captured local geometry information
helps MAP-VAE not only to reconstruct point clouds better,
but also to learn more discriminative features for each point
for better segmentation. Finally, we show 100 segmentation
results in two challenging shape classes, respectively, i.e.,
airplane and chair, in Fig. 6. The consistent segmentation
results also justify the good performance of MAP-VAE.
Shape generation.Next we demonstrate how to generate
novel shapes using the trained MAP-VAE. Here, we first
sample a noise vector from the employedZ-dimensional
unit Gaussian distribution, and then, convey the noise to the
global decoderD in branchR in Fig. 1.

Using MAP-VAE trained under ModelNet10 in Table 6,
we generate some novel shapes in each of 10 shape class-
es in Fig. 10 (a), where we sample 4 noise vectors around
the feature center of each shape class to generate 4 shape
class specific shapes. The generated point clouds are sharp
and with high fidelity, where more local geometry details
are learned. Moreover, we also observe high quality point
clouds in the same shape class from MAP-VAE trained un-
der ShapeNet part dataset in Table 7. We generate 100 air-
planes using 100 noise vectors sampled around the feature
center of the airplane class, as demonstrated in Fig. 10 (b).

We further show the point clouds generated by the inter-
polated features between two feature centers of two shape
classes, where the MAP-VAE trained under ModelNet10 in
Table 6 is used. The interpolated point clouds are plausible
and meaningful, and smoothly changed from one center to
another center in Fig. 11 (a) and (b). Similar results can be
observed by interpolations between two shapes in the same
class in Fig. 11 (c) and (d), where the MAP-VAE trained
under ShapeNet part dataset in Table 7 is used.

(a) (b) (c)

Figure 8. Compared to the three generated class centers under
ModelNet10, MAP-VAE (in (c)) learns more local geometry de-
tails than “LGAN” (in (a)) and “LGAN1” (in (b)) in Table 7, due
to the effective local self-supervision in half-to-half prediction.

(b) (e)(d)(c)(a)

EMD:0.036152 EMD:0.031853 EMD:0.030103 Ground truth

EMD:0.047563 EMD:0.040906 EMD:0.030873 Ground truth

EMD:0.047256 EMD:0.057198 EMD:0.041904 Ground truth

EMD:0.050879 EMD:0.077586 EMD:0.043032 Ground truth

Figure 9. Visual comparison with “LGAN” (in (b)) in Table 7 and
“PCN-EMD” (in (c)) in Table 8 for the completion of partial point
clouds (a). MAP-VAE (in (d)) completes more geometry details.

Finally, we visually highlight the advantage of MAP-
VAE by the point cloud generated at the feature center of a
shape class. As demonstrated in Fig. 8, we compare MAP-
VAE with the autoencoder in LGAN[1], and this autoen-
coder with a variational constraint. Using the trained de-
coder of each method, we generate a point cloud from the
feature center at each of the three shape classes. Compared
to the three class centers in Fig. 8 (a) and Fig. 8 (b), MAP-
VAE in Fig. 8 (c) can generate point clouds with more local
geometry details, such as sharp edges of parts.



Table 7. The segmentation comparison among unsupervised 3Dfeature learning methods under ShapeNet part dataset. The metric is
mIoU(%) and per-point classification accuracy(%) on points.α = 0.01,β = 1000,W = 6,Z = 128.

Methods Mean Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

m
Io

U LGAN [1] 57.04 54.13 48.67 62.55 43.24 68.37 58.34 74.27 68.38 53.35 82.62 18.60 75.08 54.70 37.17 46.71 66.39
LGAN1 [1] 56.28 52.16 57.85 62.66 42.01 67.66 52.25 75.37 68.63 49.07 81.52 19.20 75.43 54.34 35.09 41.48 65.73

Ours 67.95 62.73 67.08 72.95 58.45 77.09 67.34 84.83 77.07 60.89 90.84 35.82 87.73 64.24 44.97 60.36 74.75

A
C

C LGAN [1] 78.24 74.93 84.36 77.02 71.10 78.23 78.34 84.41 78.29 69.05 86.86 67.93 90.42 81.95 68.44 82.27 78.25
LGAN1 [1] 77.35 73.64 84.05 75.93 69.82 77.35 77.45 83.72 78.10 68.45 85.85 66.06 89.69 81.43 67.59 81.10 77.33

Ours 87.45 83.50 93.79 86.12 83.28 87.03 88.08 93.15 86.66 79.31 94.89 77.37 98.86 90.51 77.14 93.21 86.25

(a) (b)

Figure 10. High fidelity novel shape generation by MAP-VAE trained under ModelNet10 in (a) and ShapeNet part dataset in (b).

(a)

(b)

(c)

(d)

Figure 11. We show shape interpolation results between two different shape classes under ModelNet10 in (a) and (b), and the shape
interpolation results between two shapes in the same class under the ShapeNet part dataset in (c) and (d).

Table 8. The completion comparison under airplane and chairclasses in terms of EMD/point,α = 0,β = 1000,W = 12,Z = 0.
Class EPN[3] Folding[40] PCN-CD[41] PCN-EMD[41] LGAN[1] Our

Airplane 0.061960 0.156438 0.046637 0.038752 0.0332180.032328
Chair 0.076802 0.297427 0.086787 0.068074 0.0559080.055696

Point cloud completion. MAP-VAE can also be used in
point cloud completion, where we setW = 12 and remove
the KL loss for fair comparison. We evaluate our perfor-
mance under the training and test sets of partial point cloud-
s in two challenging shape classes in [3], i.e., airplane and
chair, where we employ the complete point clouds in [26]
as ground truth. Since each partial point cloud has differen-
t number of points, we resample 2048 points to obtain the
front and back halves. We compare with the state-of-the-art
methods in Table 8. The lowest EMD distance shows that
MAP-VAE outperforms all competitors. In addition, we al-
so visually compare the completed point clouds in Fig. 9,

where MAP-VAE completes more local geometry details.

7. Conclusions

We propose MAP-VAE for unsupervised 3D point cloud
feature learning by jointly leveraging local and global self-
supervision. MAP-VAE effectively learns local geometry
and structure on point clouds from semantic local self-
supervision provided by our novel multi-angle analysis.
The outperforming results in various applications show that
MAP-VAE successfully learns more discriminative global
or local features for point clouds than state-of-the-art.
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