
EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel
(Guest Editors)

Volume 21 (2002), Number 3

Object Space EWA Surface Splatting: A Hardware
Accelerated Approach to High Quality Point Rendering

Liu Ren� Hanspeter Pfister� Matthias Zwicker�

Computer Science Department MERL Department of Computer Science
Carnegie Mellon University Mitsubishi Electric Research Laboratories ETH Zürich

Pittsburgh, PA 15213 Cambridge, MA 02139 8092 Zürich
USA USA Switzerland

Abstract
Elliptical weighted average (EWA) surface splatting is a technique for high quality rendering of point-sampled 3D
objects. EWA surface splatting renders water-tight surfaces of complex point models with high quality, anisotropic
texture filtering. In this paper we introduce a new multi-pass approach to perform EWA surface splatting on mod-
ern PC graphics hardware, called object space EWA splatting. We derive an object space formulation of the EWA
filter, which is amenable for acceleration by conventional triangle-based graphics hardware. We describe how
to implement the object space EWA filter using a two pass rendering algorithm. In the first rendering pass, vis-
ibility splatting is performed by shifting opaque surfel polygons backward along the viewing rays, while in the
second rendering pass view-dependent EWA prefiltering is performed by deforming texture mapped surfel poly-
gons. We use texture mapping and alpha blending to facilitate the splatting process. We implement our algorithm
using programmable vertex and pixel shaders, fully exploiting the capabilities of today’s graphics processing units
(GPUs). Our implementation renders up to 3 million points per second on recent PC graphics hardware, an order
of magnitude more than a pure software implementation of screen space EWA surface splatting.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms

1. Introduction

Point-based surface models define a 3D surface by a dense
set of sample points. Point-rendering algorithms reconstruct
a continuous image of the sampled surface for display. The
points on the surface are commonly called surface elements
or surfels to indicate their affinity with picture elements (pix-
els) and volume elements (voxels). A point-based represen-
tation has advantages for geometries with complex topology,
in situations where connectivity information is not required,
or for fusion of data from multiple sources 11� 16. Surfel mod-
els can be acquired directly using 3D scanning techniques 10

or by conversion from polygon models with textures 13.

Most point-rendering algorithms to date have focused on
efficiency and speed 7� 13. Some of them use OpenGL and

� Email: liuren@cs.cmu.edu
� Email: pfister@merl.com
� Email: zwicker@inf.ethz.ch

hardware acceleration 14� 15, achieving interactive rendering
performances of two to five million points per second. How-
ever, none of these algorithms supports antialiasing for mod-
els with complex surface textures. Recently, Zwicker et al. 16

introduced elliptical weighted average (EWA) surface splat-
ting, the only point-rendering method with anisotropic tex-
ture filtering to date. The algorithm uses a screen space for-
mulation of the EWA texture filter 8� 5 adapted for irregular
point samples. However, a non-optimized software imple-
mentation of EWA surface splatting only achieves a render-
ing performance of up to 250,000 points per second 16.

In this paper, we propose a new formulation of EWA sur-
face splatting called object space EWA surface splatting. It
computes the EWA resampling filter in object space and can
efficiently be implemented on modern graphics processing
units (GPUs). It achieves a performance of up to three mil-
lion points per second with high image quality and texture
antialiasing. We anticipate that rapid increases in GPU speed

c� The Eurographics Association and Blackwell Publishers 2002. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

will widen the performance gap to CPU-based implementa-
tions even further.

After a discussion of previous work in the next section, we
review the screen space formulation of EWA surface splat-
ting in Section 3. We then introduce object space EWA sur-
face splatting in Section 4. We will show in Section 5 how
the object space EWA filter can be efficiently implemented
on graphics hardware using a new multi-pass approach. Our
method also takes advantage of programmable vertex and
pixel shaders, as shown in Section 6. Section 7 describes
two alternative methods to normalize the resampling kernels
for continuous surface reconstruction. Finally, we discuss re-
sults and performance in Section 8.

2. Previous Work

Levoy and Whitted 11 proposed points as an alternative prim-
itive for the display of continuous surfaces. They discuss
fundamental issues such as surface reconstruction, visibil-
ity, and rendering of transparent surfaces. Grossman and
Dally 6� 7 and Pfister et al. 13 build on these ideas by present-
ing efficient point-rendering systems for models with com-
plex geometry. Alexa et al. 1 and Kalaiah and Varshney 9

use methods of differential geometry to render and modify
point-based surfaces. Although very efficient, none of these
software based systems achieves interactive frame rates for
objects with more than 200,000 points.

The Stanford QSplat system by Rusinkiewicz and
Levoy 14 was developed to display the highly complex mod-
els of the Digital Michelangelo Project 14. It uses OpenGL
and hardware acceleration, achieving a rendering perfor-
mance of 2.7 million points per second. Stamminger and
Drettakis 15 use standard OpenGL point primitives to render
point-sampled procedural geometry. Their implementation
achieves about 5 million points per second. Both methods
do not handle textured models.

Two recent papers 3� 4 combine polygon and point primi-
tives into efficient rendering systems that choose one or the
other based on screen space projection criteria. Both systems
make use of current graphics hardware and achieve real-time
performance for reasonably complex models. However, nei-
ther system handles surface textures, and the introduction of
connectivity information diminishes the advantages of pure
point based models.

Our goal is to design a rendering system that interactively
renders complex point models with arbitrary surface tex-
tures at the highest possible quality. We also want to take
advantage of the advances in PC graphics hardware, namely,
the ever increasing performance of GPUs and programmable
shading 12. To provide anisotropic texture filtering, we base
our approach on screen space EWA surface splatting 16. In
the next section we review the mathematical framework of
screen space EWA surface splatting and introduce our new
object space formulation in Section 4.

3. Screen Space EWA Splatting

In the screen space EWA splatting framework 16, objects are
represented by a set of irregularly spaced points �Pk� in three
dimensional object space without connectivity. Each point is
associated with a radially symmetric basis function rk and
coefficients wr

k, wg
k , wb

k that represent continuous functions
for red, green, and blue color components. Without loss of
generality, we perform all further calculations with scalar co-
efficients wk. The basis functions rk are reconstruction filters
defined on locally parameterized domains, hence they define
a continuous texture function on the surface represented by
the set of points. As illustrated in Figure 1, the color of any

3D object space

Pk

Q
uuuu

uk
uu0

uu11

2D parameterization
local parameterization

basis function rk(u-uk)

small neighborhood
around Q

P3P1

P2

u111

uu2
u3

Figure 1: Defining a texture function on the surface of a
point-based object.

point Q with local coordinates u is evaluated by accumu-
lating the basis functions rk, yielding a continuous texture
function fc�u� as the weighted sum

fc�u� � ∑
k�N

wkrk�u�uk�� (1)

where uk is the local coordinate of point Pk.

In the ideal resampling framework introduced by Heck-
bert 8, rendering the texture function fc�u� yields a con-
tinuous output function gc�x� in screen space that respects
the Nyquist criterion of the output pixel grid, thus avoiding
aliasing artifacts. The rendering process includes the follow-
ing conceptual steps: First, fc�u� is warped to screen space
using a local affine mapping of the perspective projection at
each point. Then the continuous screen space signal is band-
limited by convolving it with a prefilter h, yielding the output
function gc�x� where x are screen space coordinates. After
rearranging the mathematical expressions as detailed in 8� 16,
we can write the output function as a weighted sum of screen
space resampling filters ρk�x�:

gc�x� � ∑
k�N

wkρk�x�� (2)

where

ρk�x� � �r�k�h��x�mk�uk��� (3)

Here, the resampling filter ρk�x� is written as a convolution
of a warped basis function r�k�x� � rk�m

�1�x�� and the pre-
filter h�x�. To simplify the evaluation of ρk, at each point

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

uk we use the local affine approximation x � mk�u� of the
projective mapping x � m�u� from the local surface param-
eterization to screen space. The local affine approximation
mk is given by the Taylor expansion of m at uk, truncated at
the linear term:

mk�u� � xk � Jk � �u�uk�� (4)

where xk � m�uk� and the Jacobian Jk � ∂m
∂u �uk� � �2�2.

In the EWA framework, elliptical Gaussians are chosen as
basis functions rk and as prefilter h because of their unique
mathematical properties. Gaussians are closed under affine
mappings and convolution, hence the resampling filter ρk
can be expressed as an elliptical Gaussian as shown be-
low. A 2D elliptical Gaussian GV �x� with variance matrix
V � �2�2 is defined as

GV �x� �
1

2π�V � 1
2

e�
1
2 xT V�1x

�

where �V � is the determinant of V . We denote the variance
matrices of the basis functions rk and the low-pass filter h
with V r

k and V h, hence rk � GV r
k

and h � GV h , respectively.
Note that a typical choice for the variance of the low-pass
filter is the identity matrix I. By substituting the Gaussian
basis function and prefilter in Equation (3), we get a Gaus-
sian resampling filter

ρk�x� �
1

�Jk
�1�GJkV r

k JT
k �I�x�mk�uk��� (5)

which is called the screen space EWA resampling filter. For
more details on its derivation, please refer to 16.

4. Object Space EWA Splatting

In Equation (3), we have expressed the resampling filter as
a function of screen space coordinates x, which is suitable
for software implementations such as 16. However, today’s
graphics engines do not allow us to compute such a filter di-
rectly in screen space. To make EWA splatting amenable to
acceleration by graphics hardware, we formulate the resam-
pling filter as a function on a parameterized surface in object
space. Then, we exploit graphics hardware to project the sur-
face to screen space, yielding the resampling filter in screen
space as in (3).

We rearrange (3) using the local affine approximation mk:

ρk�x� � �r�k �h��x�mk�uk��

� �r�k �h��mk�m
�1
k �x���mk�uk��

� �r�k �h��Jk�m
�1
k �x��uk��

� �rk �h���u�uk� � ρ�k�u�� (6)

yielding the object space resampling filter ρ�k�u� defined in
coordinates u of the local surface parameterization. Note
that in contrast to the screen space resampling filter, the
object space resampling filter consists of the convolution
of an original basis function rk�u� and a warped prefilter

h�k�u� � �Jk�h�Jk�u��. As illustrated in Figure 2a, the conver-
sion between ρk�x� and ρ�k�u� corresponds to the projection
from object to screen space.

Similar to Section 3, we use Gaussians as basis func-
tions and prefilter in (6). This yields an analogous expression
to (5), which we call the object space EWA resampling filter:

ρ�k�u� � G
V r

k �J�1
k J�1

k
T �u�uk�� (7)

Finally, we use Equations (6) and (7) to reformulate the
continuous output function (2) as a weighted sum of object
space EWA resampling filters:

gc�x� � ∑
k�N

wkG
V r

k �J�1
k J�1

k
T �m�1�x��uk�� (8)

Figure 2b depicts a Gaussian resampling filter in the local
surface parameterization and its counterpart in screen space,
and Figure 2c shows the corresponding warping and resam-
pling of a checkerboard texture.

m

m-1

EWA
resampling

uk m(uk)

G
Vk

r J 1– J 1
T

–+
(u)

1
1–

----- -
JVk

r T IJ
---- G

J +
(x)

resampling kernel ρk(x)

uk

m(uk)

resampling kernel ρ'k(u)

m

m-1

local parameterization u screen space x

a)

b)

c)

kk
k

k k

Figure 2: Object space and screen space resampling filters:
a) Conversion between object space and screen space resam-
pling filter. b) Object space and screen space EWA resam-
pling filters. c) Checkerboard texture resampled using the
EWA resampling filter.

5. Hardware Accelerated Rendering

Our hardware accelerated surface splatting algorithm is
based on Equation (8) and uses a two-pass approach, em-

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

ulating an A-Buffer 2. The first pass (Section 5.1) performs
visibility splatting 13 by rendering an opaque polygon for
each surfel into the Z-buffer. The second pass (Section 5.2)
implements Equation (8) as follows: First we set up the ob-
ject space EWA resampling filter as a polygon with a semi-
transparent alpha texture. On modern GPUs we can imple-
ment this using programmable vertex shaders. Then the pro-
jection of the textured polygon to screen space yields the
screen space EWA resampling filter, which we also call EWA
splat. The splats are evaluated at pixel centers, multiplied
with the color wr

k, wg
k , wb

k of the current surfel, and the re-
sulting values are accumulated in each pixel. During ras-
terization, we perform depth tests using the data in the Z-
buffer that was generated in the first rendering pass to deter-
mine whether the splats are visible. This ensures that in each
pixel only those splats that represent the surface closest to
the viewer are accumulated.

The QSplat rendering system 14 also proposes a two pass
algorithm for point-based rendering using semi-transparent
splats, although without antialiasing. Both algorithms use
a textured polygon to represent a surfel. However, in their
approach the vertex positions of a surfel polygon in object
space are static, i.e, determined before rendering. In contrast,
we compute view-dependent vertex positions on the fly dur-
ing rendering to avoid aliasing, as described in Section 5.2.

5.1. Visibility Splatting

The purpose of visibility splatting is to render a depth image
of the object into the Z-buffer such that it does not contain
any holes 13, as illustrated in Figure 3. The depth image will
be used to control the accumulation of the semi-transparent
splats in the second rendering pass, as described below. We
center an opaque quad at each surfel Pk, perpendicular to
the normal nk of the surfel (Figure 3a). The quad is raster-
ized into the Z-buffer only, without modifying other frame
buffer attributes(Figure 3b). To avoid holes in the depth im-
age, the side length of the quad is chosen as 2h, where h is
the maximum distance between surfels in a small neighbor-
hood around Pk.

a) opaque surfel quad b) depth image without holes

visibility splatting

nk

Pk

2h{

Figure 3: Visibility splatting: a) Opaque quad centered at
surfel Pk. b) Depth image without holes in the Z-buffer.

To render a point-based object without artifacts, we must
accumulate all the splats of the visible surface closest to the
viewer while discarding all other splats. During rasterization

of the splats, we decide for each pixel whether to discard or
accumulate the current contribution by comparing the depth
value of the splat with the depth image that was generated
as explained above. However, to prevent contributions of the
visible surface from being accidentally discarded, the depth
image should be translated away from the viewpoint by a
small depth threshold zt . A simple solution is to translate
the depth image by zt along the z-axis in camera space, as
proposed by 14. However, this leads to occlusion artifacts as
shown in Figure 4a. Surface B is partially occluded by Sur-
face A. However, the depth image generated by translating A
along the camera space z-axis wrongly occludes additional
regions of B. In Figure 9a (see color section), an example
image exhibits occlusion artifacts in areas close to objects
silhouettes. We avoid these problems by translating the depth
image along the viewing rays instead, as illustrated in Fig-
ure 4b. As a consequence, the same region in surface B is
occluded by surface A and the depth image, and no occlu-
sion artifacts appear in the example image (Figure 9b, see
color section). Obviously, visibility splatting may still dis-
card visible surfaces if zt is too small, or lead to the blending
of several surfaces if zt is too big. A good choice for zt is the
average distance between the surfels.

camera space

z zt

}

camera space

z zt

}

surface A surface B

depth image

surface A surface B

depth image

}
}
}

occluded

visible
wrongly occluded

}
}

occluded

visible

a) b)

Figure 4: Applying the depth offset zt : a) Translation along
the camera space z-axis. b) Translation along viewing rays.

5.2. EWA Splatting Using Textured Polygons

In the second rendering pass, we perform surface splatting
by rendering textured polygons representing a discrete ob-
ject space EWA resampling filter (7). To accelerate the com-
putation of the resampling filter, Heckbert 8 proposes to use
a look-up table storing a limited number of precomputed,
discrete resampling filters, which he calls an angled image
pyramid. This pyramid is generated and indexed by quantiz-
ing the five parameters of an ellipse: x and y position, minor
and major radius, and orientation. However, this approach is
not suitable for implementation on graphics hardware, since
it requires a huge amount of texture memory. Furthermore,
there is no hardware support for quantizing the ellipse pa-
rameters and indexing the image pyramid to access the cor-
responding resampling filter, hence this would have to be
done in software.

Our approach to solve this problem is shown in Figure 5.

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

We use a single alpha texture that encodes a discrete unit
Gaussian basis function. For each surfel, we then need to
compute a corresponding parallelogram, which stretches and
scales the unit Gaussian to match the object space EWA
resampling filter. The stretching and scaling is performed
implicitly by texture mapping, and we only have to com-
pute the vertices of the parallelogram. As explained below,
these computations can be performed completely in the pro-
grammable vertex shaders of current graphics processors.
We then render the textured parallelograms into the frame
buffer using additive alpha blending. By enabling depth
comparison with the depth image generated in the first ren-
dering pass while disabling depth update, this has the effect
of blending together all splats within the depth range zt .

In the following, we will discuss how to determine the ob-
ject space EWA resampling filter, how to compute the ver-
tex positions of the surfel parallelogram in object space, and
how to choose the optimal size of the alpha texture.

alpha texture

+

 surfe
l parallelogram

texture m
apping

projection and
alpha blending

 deformation(0,1) (1,1)

(0,0) (1,0)

(0,0)

(0,1)

(1,1)

(1,0)
Pk

Pk

(0,0)

(0,1)

(1,1)

(1,0)

object space EWA filt
er

Pk

Figure 5: EWA splatting using textured polygons. Note the
dashed line means the shape of the surfel polygon can not be
determined before rendering, but is view dependent.

Determining the object space EWA resampling filter: To
compute the object space EWA resampling filter ρ�k�u� of
Equation (7), we need to evaluate the Jacobian J�1

k . First,
we derive an analytical form of Jk , which maps the coor-
dinates u of the local surface parameterization to viewport
coordinates x, and then we compute its inverse. Compared
with the technique introduced for screen space EWA splat-
ting 16, our approach, shown in Figure 6, avoids ray casting
and can be computed with fewer instructions.

We construct a local parameterization of the object sur-
face around a point Pk by approximating the surface with its
tangent plane given by the normal nk. The parameterization
is defined by choosing two orthogonal basis vectors �s and �t
in this plane, attached to the position �o of the point Pk. Note

that �s, �t, and �o are 3� 1 vectors defined in object surface.
Hence a point u with components us and ut in local surface
coordinates corresponds to a point po�u� � �o� us ��s� ut ��t
in object space. If we assume that the transformation from
object space to camera space only contains uniform scaling
S, rotation R and translation T, a point u corresponds to the
following point pc�u� in camera space:

pc�u� � R �S �po�u��T

� �R �S ��o�T��us �R �S ��s�ut �R �S ��t
� o�us � s�ut � t� (9)

where o � �ox�oy�oz� is the surfel position in camera space,
while s � �sx� sy� sz� and t � �tx� ty� tz� are the basis vectors
defining the local surface parameterization in camera space.
Next, we map the points from camera space to screen space.
This includes the projection to the image plane by perspec-
tive division, followed by a scaling with a factor η to screen
coordinates (viewport transformation). The scaling factor η
is determined by the view frustum and computed as follows:

η �
vh

2tan� f ov
2 �

�

where vh stands for the viewport height and f ov is the field
of view of the viewing frustum. Hence, screen space coordi-
nates x��x0�x1� of the projected point �us�ut� are computed
as (c0 and c1 are given translation constants)

x0 � η � ox �us � sx �ut � tx
oz �us � sz �ut � tz � c0

x1 � �η � oy �us � sy �ut � ty
oz �us � sz �ut � tz � c1� (10)

So the Jacobian Jk consisting of the partial derivatives
of (10) evaluated at �us�ut� � �0�0� is

Jk �

�
∂x0
∂us

∂x0
∂ut

∂x1
∂us

∂x1
∂ut

�
�0�0�

� η � 1
o2

z

�
sx �oz� sz �ox tx �oz� tz �ox

sz �oy� sy �oz tz �oy� ty �oz

�
�

camera space

screen space object space

local surface parameterization

nk

x1

x0 t
~

s
~

o
~

Figure 6: Calculating the Jacobian Jk .

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

Computing the surfel parallelogram vertex position:
Once the Jacobian matrix is computed, the object space
EWA resampling filter defined on the locally parameterized
surface can be written as:

ρ�k�u� � GMk �u� where Mk �V r
k � J�1

k J�1
k

T
.

For points with approximately unit spacing, the reconstruc-
tion kernel is chosen as a unit Gaussian, i.e., V r

k � I, as il-
lustrated in Figure 7a. Otherwise, it can be determined as
proposed in 16. We decompose the symmetric matrix Mk as
follows:

Mk � Rot�θ� �Λ �Λ �Rot�θ�T
� (11)

where

Rot�θ� �
�

cos�θ� � sin�θ�
sin�θ� cos�θ�

�
and Λ �

�
r0 0
0 r1

�
�

The rotation matrix Rot�θ� consists of the eigenvectors, and
the scaling matrix Λ consists of the square roots of the eigen-
values of Mk. Introducing the linear relationship

u � Rot�θ� �Λ �y� (12)

we have yT y � uT M�1
k u and we can rewrite GMk �u� as

GMk �Rot�θ� �Λ �y� � 1
2π � r0r1

e�
1
2 yT y �

1
r0r1

GI�y�� (13)

Equation (13) represents a unit Gaussian in y, which is
mapped to the elliptical Gaussian resampling filter us-
ing (12) as shown in Figure 7b. Since our alpha texture en-
codes the unit Gaussian, we rotate and scale a unit quad us-
ing (12), and then apply the alpha texture to the deformed
quad, yielding the elliptical resampling filter as a textured
parallelogram.

reconstruction kernel

low-pass filter

resampling filter

us

ut

us

ut

Rot(θ)·Λ·[01]Rot(θ)·Λ·[10][] []

a) b)

 us / x0

 ut / x0

 us / x1

 ut / x1

Figure 7: The object space EWA resampling filter: a) A unit
reconstruction kernel and the warped low-pass filter defined
by Jk. b) The resampling filter as a mapping from a unit cir-
cle to an ellipse.

Although the Gaussian resampling filter has infinite sup-
port in theory, in practice it is computed only for a limited
range of the exponent β�y� � 1

2 yT y. Hence, we choose a
cutoff radius c such that β�y� 	 c, where a typical choice is

c � 1. Thus the alpha texture actually encodes the unit Gaus-
sian in the domain

y �
�
�
2c
�
2c

�
�
�

2c

2c

�
�

To encode the vertex positions of the deformed surfel
quad and to perform texture mapping, each vertex has tex-
ture coordinates v � ��0�0�� �0�1�� �1�1�� �1�0��. Given ver-
tex texture coordinates v � �v0�v1�, we compute the camera
space position pc�u� as illustrated in Figure 8: First, we need
to map the texture coordinates v to the coordinates y in the
domain of the unit Gaussian by scaling them according to
the cutoff radius c:

y � 2

2c�

�
v0

v1

�
�
�

1
2
1
2

�
�� (14)

Then we deform the textured quad using Equation (12),
yielding coordinates u of the local surface parameterization.
With Equation (9), we finally compute the vertex positions
pc�u� of the surfel parallelogram in camera space.

(0,0)

(0,1)

(0,0)

(0,1)

(1,0)

cutoff radius
2c

(0,1)

(1,0)(0,0)

(1,0)

texture space v domain of unit Gaussian y local surface parameterization u

Equation (14) Equation (12)

(1,1)

Figure 8: Constructing a texture-mapped polygon that rep-
resents the object space EWA resampling filter.

Determining the optimal texture size: To make full use
of the eight bit precision of the alpha texture, we encode
the non-constant part from Equation (13) in each texel, i.e.,

g�y� � e�
1
2 yT y. Hence, the function range �0 � � �1� maps to

the whole range �0 � � �255� of all texel values. Although a
larger texture size increases the precision of the discrete rep-
resentation of the 2D Gaussian function, the quantization
of the function values to eight bits leads to redundancy in
high resolution alpha textures, since nearby texels may al-
ways map to the same quantized value. Assume we use a
square texture with resolution len� len. Since the unit Gaus-
sian function is rotation invariant, we can represent g�y� as

g��r� � e�
1
2 r2

in polar coordinates. To make full use of eight
bits per texel, the following condition should be satisfied for
all r � �0�

2c�:�����d�g��r��

dr

2c

len
2

������
�����r � e� 1

2 r2

2c
len
2

�����	 1
28�1

� (15)

From this it follows that

len� 510 �

2c � r � e� 1
2 r2

� (16)

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

The optimal texture resolution corresponds to the smallest
value of len that satisfies the above condition. For the typical
choice c � 1 we find len � 438.

6. Implementation

6.1. Programmable Shader Computations

Programmable shaders 12 provide efficient GPU level com-
puting. Our hardware accelerated surface splatting algo-
rithm is implemented using programmable vertex and pixel
shaders.

Vertex Shader Computations: During the first rendering
pass, the depth offset along the view rays in camera space is
computed using the vertex shader. In the second rendering
pass, the computation for the vertex positions of the surfel
polygon is also implemented using the vertex shader. Due to
the simple instruction set of the vertex shader 12, the imple-
mentation of the symmetric matrix decomposition in Equa-
tion (11) requires a careful design. We make heavy use of the
two most powerful and efficient shader instructions, recipro-
cal square root (RSQ) and reciprocal (RCP). The details of
the computation are described in Appendix A. The constant
part of Equation (13), 1

2π�r0�r1
, is output to the alpha channel

of the diffuse color register. In this way, it can be accessed by
the pixel shader later. The scaling factor η can be precom-
puted and stored as a vertex shader constant. Since vertex
shaders do not support the creation of new vertices, we need
to perform the same per-vertex computation four times for
each surfel quad.

Pixel Shader Computations: The computation of wkρk�x�
in Equation (2) is performed using the pixel shader’s per-
fragment processing. The colors wr

k, wg
k , wb

k are retrieved
from the red, green, and blue channel of the input register
for the diffuse color. Multiplying the texel alpha value by the
constant 1

2π�r0�r1
, which is stored in the alpha channel of the

diffuse color, yields ρk�x�. Finally, the accumulation of the
EWA splats in Equation (2) is performed by additive alpha
blending.

6.2. Hierarchical Rendering

In our implementation we have chosen the surfel LDC tree 13

for hierarchical rendering. However, other hierarchical data
structures such as a bounding sphere hierarchy 14 could be
used, too. While traversing the LDC tree from the lowest
to the highest resolution blocks, we perform view-frustum
culling of surfel blocks and backface culling using visibility
cones. To choose the appropriate octree level to be projected,
we perform block bounding box warping similar to 13. This
allows us to estimate the number of projected surfels per
pixel, facilitating progressive rendering.

For efficient hardware acceleration, the surfels of multi-
ple LDC tree blocks need to be stored together in a num-
ber of big vertex buffers. This minimizes the switching of

vertex buffers during rendering and enhances performance.
The vertex buffers are allocated in the local memory of the
graphics card or in AGP (Accelerated Graphics Port) mem-
ory. Their sizes are chosen to be optimal for the graphics card
and to maximize performance. To access the vertex data of
a block in the LDC tree, we store the corresponding vertex
buffer ID and the start position of its vertex data in the vertex
buffer.

7. Pre-Processing

Due to the irregular sampling of point models and the trun-
cation of the Gaussian kernel, the basis functions rk in object
space do not form a partition of unity in general. Neither do
the resampling kernels in screen space. To enforce a partition
of unity, we could perform per-pixel normalization in the
frame buffer after splatting 16. However, this post-processing
operation is not supported by today’s graphics hardware. In
addition, directly locking and accessing the frame buffer dur-
ing rendering for per-pixel normalization slows down the
rendering speed. But without normalization, the brightness
of the final image varies with the accumulated filter weights,
leading to visible artifacts (Figure 10a, see color section).
To solve this problem we propose a pre-processing method,
which we call per-surfel normalization.

7.1. Per-Surfel Normalization

If the basis functions rk in Equation (1) sum up to one every-
where, applying a low-pass filter will still guarantee that the
resampling filters in screen space form a partition of unity.
Consequently, our pre-processing method does not consider
the prefiltering step during rendering and becomes a view
independent process. The normalized view independent tex-
ture function in object space can be written as follows:

fc�u� � ∑
k�N

wkr̂k�u�uk� � ∑
k�N

wk
rk�u�uk�

∑ j�N r j�u�u j�
.

Unfortunately, the above rational basis function r̂k invali-
dates the derivation of a closed form resampling filter. In-
stead, we use the sum of the weights at each surfel position
to approximate the above formula, yielding

fc�u� � ∑
k�N

wkskrk�u�uk�,

where sk �
1

∑ j�N r j�uk�u j�
. We call sk the surfel’s normaliza-

tion weight, which is acquired by a view independent process
discussed in Section 7.2. Based on Equation (7), we adjust
our object space EWA resampling filter with sk, yielding:

ρ�k�u� � skG
V r

k �J�1
k J�1

k
T �u�uk�, (17)

which is the resampling filter used by object space EWA sur-
face splatting with per-surfel normalization.

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

7.2. Acquiring surfel normalization weights

To acquire a surfel’s normalization weight, the point model
is first rendered using our two pass algorithm without pre-
filtering and per-surfel normalization. Then the Z-buffer and
the frame buffer are read back to acquire the normaliza-
tion weights. In the third pass, we traverse the surfel LDC
tree and calculate the depth value and the projected position
in screen space of the center point of each surfel polygon.
Based on the Z-buffer information, the visible surfels are
detected. After rendering, the alpha channel of each frame
buffer pixel stores the sum of the accumulated contributions
S from all EWA splats projected to that pixel. Hence the vis-
ible surfel’s normalization weight is sk � 1

S . To capture the
normalization weights for surfels invisible from one view,
multiple-view weight capture is applied, which can be per-
formed automatically or interactively. For automatic capture,
a bounding sphere is built around the model first. Then surfel
weights are captured from different view points, which are
uniformly distributed on the surface of the sphere. For inter-
active capture, the user manually specifies a part of the point
model for capturing as shown in Figure 10b (see color sec-
tion). In both methods, the normalization weight of the same
surfel may be captured several times. To get rid of noise, we
choose the median value as the final normalization weight.

Per-surfel normalization assumes that the normalization
weight is the same in the small neighborhood covered by
the surfel polygon. For each surfel, the normalization weight
captured at the center of the surfel quad is copied to its poly-
gon vertices during rendering. The above assumption is not
true, however, at the edges of the point model. In this case we
capture the normalization weight for each vertex of the surfel
polygon. Thus surfel quads at edges have different normal-
ization weights for each vertex.

In the capturing process, direct rendering of surfel models
can cause overflow in the alpha channel of frame buffer pix-
els where the accumulation of contributions from different
splats is greater than one. In this case, the surfel normaliza-
tion weight is incorrectly computed due to clamping in the
alpha channel. To solve the problem, we use a global param-
eter γ to avoid overflow. In our implementation, the weight
capture process uses the following object space texture func-
tion:

fc�u� � ∑
k�N

γwkrk�u�uk��

By setting γ to a suitable value less than one, the accumu-
lated contributions of the splats in a pixel will not be too
large to be clamped. Consequently, the image rendered dur-
ing normalization weight capture is darker, as shown in Fig-
ure 10b (see color section). A typical choice for γ is 0�73,
which works for most surfel models we use. For a normal-
ization weight s�k and a global parameter γ, the final surfel
normalization weight is sk � s�kγ.

8. Results

We have implemented our hardware accelerated point-
rendering pipeline with DirectX 8.1 under Windows XP.
Furthermore, we have implemented an automatic surfel nor-
malization weight capture tool for pre-processing of point
models. Performance has been measured on a 1GHz AMD
Athlon system with 512 MB memory. We used an ATI
Radeon 8500 graphics card and a NVidia GeForce4 Ti 4400
GPU.

To test antialiasing and rendering speed, we used a plane
consisting of 64k surfels with a checkerboard texture (Fig-
ure 11, see color section). In order to test raw performance,
i.e., how many splats per second our algorithm can render,
we disabled block culling and multiresolution rendering. We
compare three different object space surface splatting al-
gorithms. Figure 11a (see color section) shows the texture
quality of object space surface splatting without EWA fil-
tering. In this case, the basis function encoded in the al-
pha texture only consists of the reconstruction filter in ob-
ject space, leading to severe aliasing artifacts. Figure 11b
(see color section) shows the texture quality of object space
surface splatting without pre-processing, where we perform
per-pixel normalization in the frame buffer after rendering
each frame to solve the normalization problem. Figure 11c
(see color section) shows the texture quality of object space
EWA surface splatting with pre-processing and per-surfel
normalization enabled during rendering. The texture qual-
ity is comparable to per-pixel normalization. The visual dif-
ference between per-surfel and per-pixel normalization be-
comes apparent only in highly irregularly sampled surfaces.

Algorithm # VS 1 # VS 2 Fps

Without EWA 13 21 57.3/59.6
EWA (per-pixel norm.) 13 78 1.3/1.0
EWA (per-surfel norm.) 13 78 16.9/23.8

Table 1: Rendering performances of the three algorithms for
frame buffer resolution 512 � 512. The left performance
number was measured with the ATI Radeon 8500 graph-
ics processor, the right number corresponds to the NVidia
GeForce4 Ti4400 GPU.

Table 1 shows rendering performances of the three al-
gorithms for a frame buffer resolution of 512 � 512. For
each algorithm, #VS1 and #VS2 denote the number of ver-
tex shader instructions used in the first and second rendering
pass, respectively. From Figure 11 (see color section) and
Table 1, we can see that EWA object space surface splatting
with per-surfel normalization is much faster than per-pixel
normalization, while achieving comparable image quality.
The splatting algorithm without EWA filtering is the fastest
method, at the expense of poor image quality due to serious
aliasing.

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

Data # Points 256 � 256 512 � 512

Salamander 103389 18.9/30.0 fps 16.9/24.9 fps
Chameleon 101685 17.0/23.2 fps 14.0/19.0 fps
Wasp 273325 6.1/8.0 fps 5.1/6.1 fps
Fiesta 352467 5.5/7.0 fps 3.8/5.3 fps

Table 2: Rendering performance for frame buffer resolu-
tions 256 � 256 and 512 � 512. The left performance
number was measured with the ATI Radeon 8500 graph-
ics processor, the right number corresponds to the NVidia
GeForce4 Ti4400 GPU.

Object space EWA surface splatting with per-surfel nor-
malization proves to be the desirable approach for high qual-
ity and interactive point rendering (Figure 12, see color sec-
tion). As can be seen in Table 2, it can handle 1.6 to 3
million points per second when object level culling is en-
abled. For surfel models with similar size, models that allow
more culling will be rendered faster. To improve the render-
ing quality further, we can combine per-surfel normalization
and per-pixel normalization during progressive rendering:
the point model is rendered by per-surfel normalization dur-
ing user interaction, and refined by per-pixel normalization
afterwards.

We also compare the performance of object space EWA
surface splatting (per-surfel normalization) with a software
implementation of screen space EWA surface splatting. For
a 512 output resolution, our algorithm can render approxi-
mately 1.5 million antialiased splats per second. On the same
PC, the software-only implementation of screen space EWA
surface splatting only renders up to 200,000 splats per sec-
ond. The software renderer is also more sensitive to the out-
put image resolution. When the image resolution becomes
higher, its performance drops linearly 16. In contrast, hard-
ware accelerated object space EWA surface splatting is less
sensitive to the output resolution (see Table 2).

Table 1 also shows that the performance of the vertex
shader plays an important role in our implementation. The
difference in the number of vertex shader instructions used
by object space surface splatting with EWA filtering (per-
surfel normalization) and without filtering results in a signif-
icant difference in performance. Moreover, when the num-
ber of surfels becomes larger, the data transfer of vertex data
from AGP memory across the AGP bus to the graphics board
becomes a bottleneck. In our implementation, we can re-
duce the number of vertex shader instructions by transmit-
ting redundant per-vertex information, but this requires more
memory at the same time. Hence, when rendering large point
models, there is a tradeoff between vertex shader simplicity
and data transfer bandwidth, respectively.

9. Conclusions

This paper contains two main contributions. First, we pre-
sented a new object space formulation of EWA surface splat-
ting for irregular point samples. Second, we developed a
new multi-pass approach to efficiently implement this algo-
rithm using vertex and pixel shaders of modern PC graphics
hardware. We have also shown a pre-processing method for
proper normalization of the EWA splats.

Besides increased performance, we believe there are other
advantages of using GPUs for point-based rendering. While
CPUs double in speed every two years, GPUs increased
their performance by a factor of 11 in the last nine months.
Undoubtedly, GPU performance will continue to increase
faster than CPU speed in the near future. Due to their fixed-
function processing there is more room for parallelization.
For example, the GPUs of the XBox and the GeForce 4 have
two vertex shaders in hardware. Because each surfel is pro-
cessed independently, this will linearly increase the perfor-
mance of our algorithm. Furthermore, the performance of
a software implementation of EWA surface splatting drops
with increased output resolution, an effect that is not nearly
as serious for our hardware based implementation. Finally,
using the GPU leaves the CPU free for other tasks, such as
AI or sound processing in games.

As future work we will further optimize our implementa-
tion and adapt it to upcoming new hardware features, such
as improved vertex shader instructions and framebuffer nor-
malization. We plan to apply the lessons learned to pro-
pose improvements for existing GPUs and to design special-
purpose hardware for EWA surface splatting. We plan to ex-
tend our approach to support interactive rendering for semi-
transparent point models and deal with issues like view-
dependent shading. We also envision to use our system to
render animated objects. While we feel that this requires
few changes to the core rendering pipeline, it is a chal-
lenging task to develop data structures that efficiently repre-
sent dynamic point clouds. Besides, we also want to extend
our method to volume data and facilitate interactive texture
based EWA volume splatting.

Acknowledgements

We would like to thank Jessica Hodgins and Paul Heckbert
from Carnegie Mellon University for helpful discussions,
Evan Hart and Jeff Royle from ATI and Henry Moreton from
NVIDIA for providing us with the latest graphics cards, and
Jennifer Roderick Pfister, Wei Li and Wei Chen for proof-
reading the paper.

References

1. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. Silva. Point Set Surfaces. In Proceedings of IEEE Visual-
ization, pages 21–28. San Diego, CA, October 2001.

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

2. L. Carpenter. The A-buffer, an Antialiased Hidden Surface
Method. In Computer Graphics, volume 18 of SIGGRAPH 84
Proceedings, pages 103–108. July 1984.

3. B. Chen and M. X. Nguyen. POP: A Hybrid Point and Polygon
Rendering System for Large Data. In Proceedings of IEEE
Visualization, pages 45–52. San Diego, CA, October 2001.

4. J. Cohen, D. Aliaga, and W. Zhang. Hybrid Simplification:
Combining Multi-Resolution Polygon and Point Rendering. In
Proceedings of IEEE Visualization, pages 37–44. San Diego,
CA, October 2001.

5. N. Greene and P. Heckbert. Creating Raster Omnimax Im-
ages from Multiple Perspective Views Using the Elliptical
Weighted Average Filter. IEEE Computer Graphics & Ap-
plications, 6(6):21–27, June 1986.

6. J. P. Grossman. Point Sample Rendering. Master’s thesis,
Department of Electrical Engineering and Computer Science,
MIT, August 1998.

7. J. P. Grossman and W. Dally. Point Sample Rendering. In
Rendering Techniques ’98, pages 181–192. Springer, Wien,
Vienna, Austria, July 1998.

8. P. Heckbert. Fundamentals of Texture Mapping and Image
Warping. Master’s thesis, University of California at Berkeley,
Department of Electrical Engineering and Computer Science,
June 17 1989.

9. A. Kalaiah and A. Varshney. Differential Point Rendering. In
Proceedings of the 12th Eurographics Workshop on Render-
ing, pages 139–150. London, UK, June 2001.

10. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The Digital Michelangelo Project:
3D Scanning of Large Statues. In Computer Graphics, SIG-
GRAPH 2000 Proceedings, pages 131–144. Los Angeles, CA,
July 2000.

11. M. Levoy and T. Whitted. The Use of Points as Display Prim-
itives. Technical Report TR 85-022, The University of North
Carolina at Chapel Hill, Department of Computer Science,
1985.

12. E. Lindholm, M. Kilgard, and H. Moreton. A User-
Programmable Vertex Engine. In Computer Graphics, SIG-
GRAPH 2001 Proceedings, pages 149–158. Los Angeles, CA,
July 2001.

13. H. Pfister, M. Zwicker, J. van Baar, and M Gross. Surfels: Sur-
face Elements as Rendering Primitives. In Computer Graph-
ics, SIGGRAPH 2000 Proceedings, pages 335–342. Los An-
geles, CA, July 2000.

14. S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution
Point Rendering System for Large Meshes. In Computer
Graphics, SIGGRAPH 2000 Proceedings, pages 343–352.
Los Angeles, CA, July 2000.

15. M. Stamminger and G. Drettakis. Interactive Sampling and
Rendering for Complex and Procedural Geometry. In Pro-
ceedings of the 12th Eurographics Workshop on Rendering,
pages 151–162. London, UK, June 2001.

16. M. Zwicker, H. Pfister., J. Van Baar, and M. Gross. Surface

Splatting. In Computer Graphics, SIGGRAPH 2001 Proceed-
ings, pages 371–378. Los Angeles, CA, July 2001.

Appendix A: Symmetric Matrix Decomposition for
Vertex Shader Implementation

We choose the following symmetric matrix decomposition method
for our vertex shader implementation. Mk is rewritten as follows:

Mk � Rot�θ� �Λ �Λ �Rot�θ�T �

�
A B

2
B
2 C

�
�

Then we define

Sgn�x� �

�
�1� x � 0
�1� x � 0

�

The following variables are stored in the vertex shader temporary
registers:

p � A�C

q � A�C

t � Sgn�p�sqrt�p2 �B2��

With those temporary variables, the scaling matrix can be computed
as

Λ �

�
r0 0
0 r1

�
�

�
�
�

�q�t�
2 0

0
�

�q�t�
2

�
� �

Rot�θ� can be computed, too. If t � 0, Rot�θ� �
�

1 0
0 1

�
, else if

t �� 0:

Rot�θ� �

�
�

�
t�p
2t �Sgn�Bp�

�
t�p

2t

Sgn�Bp�
�

t�p
2t

�
t�p
2t

�
� �

Square root and division operations in the above formulas can be
computed efficiently using the standard DirectX vertex shader in-
structions "RSQ" and "RCP", respectively.

c� The Eurographics Association and Blackwell Publishers 2002.

Liu Ren and Hanspeter Pfister and Matthias Zwicker / Object Space EWA Surface Splatting

a) b)

Figure 9: [Liu Ren et al, Object Space EWA Splatting]
Comparison of the two depth offset schemes: a) Translation
along the camera space z-axis leads to occlusion artifacts. b)
Translation along the viewing rays shows no artifacts.

a) b) c)

Figure 10: [Liu Ren et al, Object Space EWA Splatting]
Pre-processing: a) Direct rendering without preprocessing.
b) The surfel weights inside the yellow box are captured in-
teractively. c) Rendering with per-surfel normalization.

a) Object space surface splatting without EWA filtering

b) Object space EWA surface splatting with per-pixel normalization

c) Object space EWA surface splatting with per-surfel normalization

Figure 11: [Liu Ren et al, Object Space EWA Splatting]
Checkerboard rendering using three different object space
surface splatting algorithms.

Figure 12: [Liu Ren et al, Object Space EWA Splatting]
Various test models (chameleon, wasp, salamander, fiesta)
with high frequency textures are rendered using object space
EWA surface splatting.

c� The Eurographics Association and Blackwell Publishers 2002.

