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Figure 1: Our method produces depth-enhanced multiview content from stereo images while preserving the original artistic
intent. (a) and (b) show the linearly mapped disparities as well as enhanced disparities computed using our method. (c) and (d)
show the result of stereo-to-multiview conversion using (a) and (b), respectively. Our method avoids the cardboarding effect
that can be seen in the linearly mapped version.

Abstract
We present a novel stereo-to-multiview video conversion method for glasses-free multiview displays. Different from
previous stereo-to-multiview approaches, our mapping algorithm utilizes the limited depth range of autostereo-
scopic displays optimally and strives to preserve the scene’s artistic composition and perceived depth even under
strong depth compression. We first present an investigation of how perceived image quality relates to spatial fre-
quency and disparity. The outcome of this study is utilized in a two-step mapping algorithm, where we (i) compress
the scene depth using a non-linear global function to the depth range of an autostereoscopic display, and (ii) en-
hance the depth gradients of salient objects to restore the perceived depth and salient scene structure. Finally, an
adapted image domain warping algorithm is proposed to generate the multiview output, which enables overall
disparity range extension.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Stereo

1. Introduction

Multiview autostereoscopic displays (MADs) are expected
to make their way into the households in the near future,
and major display manufacturers are intensively working
towards consumer-grade screens. A significant limitation
of the current autostereo technology is the display’s depth
range. While the emergence of very high resolution displays
(4k and beyond) can alleviate this problem to a certain de-
gree, the constraints on the display depth range will remain
as an inherent limitation of the MAD techologies.

In contrast to the recent progress on the display side, au-
tostereoscopic content creation still lacks the tools and stan-
dards for the mainstream deployment of MAD technologies.
In fact, content creation for 2-view stereo (S3D) for glasses-
based systems is just developing and maturing. Even with
the emergence of MAD technologies, stereo will remain in
use for the foreseeable future, as content creators cannot
change rapidly and completely. Consequently, support for
legacy stereo content through stereo-to-multiview conver-
sion will likely be a key feature for ensuring a graceful and
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backward compatible transition from 2-view stereo to multi-
view autostereo.

The main technical challenge in faithful stereo-to-
multiview conversion is that the disparity range of many
S3D scenes often exceeds the limitations of MADs. How-
ever, current stereo-to-multiview conversion methods such
as depth-image based rendering (DIBR) [SMD∗08] and im-
age domain warping (IDW) [SWL∗13] directly interpolate
between the two input views and do not take the inherent
depth limitations of autostereoscopic screens into account.
Moreover, unlike in the early days of S3D where the tech-
nology was used mainly as a “wow factor”, more recently
the depth layout is being used as an artistic element to sup-
port the content’s narrative and action. Thus, any autostereo-
scopic content creation workflow should not only reduce the
content’s depth range to the limits of the MAD technology,
but also preserve the artistic intent and perceived depth lay-
out as much as possible.

In their basic work, Zwicker et al. [ZMDP06] evaluate the
bounds on content creation for multiview displays and pro-
pose filtering the content as solution for the limited depth
range. Didyk et al. recently proposed a framework for depth
remapping based on just noticeable differences (JND) of
depth perception [DRE∗12b]. They identify content creation
for multiview as one of the use cases, and also propose blur-
ring the content in addition to depth compression. However,
from a creative point of view, filtering the content in this
way is unsuitable. For instance those objects that are far off
screen are in many cases the most important by artistic in-
tent, and blurring a character that is in center of attention is
undesirable. Furthermore, previous methods have not been
evaluated for video and live action footage so far. Inspired
by this previous work, we address stereo-to-multiview con-
version from the point of view of content creation. Rather
than JND, we introduce a notion of saliency to capture and
characterize artistic intent. Filtering important image content
is avoided and instead we rather sacrifice noticeable dispar-
ity differences in non-salient regions.

We start by investigating the influence of disparity and
texture frequency on the perceived picture quality through
a subjective study. Based on the study, we choose a range
of disparities that are perceived as pleasant but exceed the
theoretical limit of multiview displays. We then compute a
disparity mapping that retains the overall depth layout but
strives to keep the volume of salient objects to avoid card-
boarding. To achieve this, we perform our mapping in two
steps. A global non-linear mapping operator first transforms
the overall depth range to the range of the display. In a sec-
ond step, we locally enhance the depth gradients to reduce
the effect of cardboarding. Both global mapping and local
gradient enhancement are based on saliency. We then gen-
erate multiview content directly from the input views us-
ing an extended version of image domain warping (IDW)
[SWL∗13], which is applicable for disparity range exten-

sion. We investigate the suitability of the different mapping
strategies for synthetic content (where perfect disparity is
given) and for live action content (where imperfect dispari-
ties pose additional challenges). In a final user study we val-
idate our approach on a variety of live action and synthetic
video sequences.

In summary, our paper makes the following contributions

• Subjective user study on perceived quality versus dispar-
ity on a multiview autostereoscopic display.

• Global and local disparity mapping algorithms based on
saliency for stereo-to-multiview conversion.

• Extended IDW algorithm for optimized disparity map-
ping, which supports overall disparity range extension.

• Validation of the approaches using a variety of live action
and synthetic video content.

In the remainder of this paper we review the related work
(Section 2), discuss the subjective experiment on image
quality on autostereoscopic displays (Section 3), detail our
algorithms for global and local disparity mapping and view
interpolation (Section 4), and finally present results (Sec-
tion 5) and validation (Section 6).

2. Related Work

The area of glasses-free multiview displays has been
researched extensively in the last decade, and [Lue12,
WLGH12, MWDG13] provide an overview on the huge
body of previous work. Most commercial displays are based
on parallax barriers [Ive03] and integral imaging [Lip08].
Since then, much work has been devoted to improve on these
glasses-free displays, with a recent trend towards computa-
tional displays [WLHR11,WLHR12,RHS∗12,THKM13].A
new method for showing stereo video on multi-layer dis-
plays was introduced in [SS13]. Unfortunately, their ap-
proach cannot deal with multi-view dispalys.

Sampling and depth of field. Similar to 2D displays,
multiview displays provide a sampled approximation to con-
tinuous light fields. Chai et al. [CTCS00] presented the first
analysis on sampling requirements for light field signals.
Durand et al. [DHS∗05] extended their work to a funda-
mental analysis of light transport and its sampling require-
ments. Based on both analyses, Zwicker et al. [ZMDP06]
determine the limits of light field displays in terms of depth
of field. One of their key findings shared by all multiview
displays is the very shallow, device-specific depth of field.
Scenes exceeding these boundaries will lead to aliasing ar-
tifacts, which can only be avoided by pre-filtering these
scenes. [KJ07, RHZN11, MWA∗13] extended this work to
include aliasing on light field displays in the presence of vi-
sual crosstalk.

Content creation for multiview displays still poses an
unresolved challenge. These displays require multiple input
views, whereas the number of views and depth of field limi-
tations are often not known during production time. A much
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more promising approach is to generate multiview images
from stereo footage or video+depth, using techniques such
as depth-image based rendering (DIBR) [SMD∗08] or image
domain warping (IDW) [SWL∗13]. These techniques deter-
mine how to warp the input images to new viewing posi-
tions, between the input views. However, they don’t consider
appropriate mapping of disparity ranges, which can lead to
flattening of the perceived image, and thus reduce the depth
experience. Very recent work [DSAF∗13] addresses content
creation for MAD using phase-based motion magnification.
Compared to our work, their method does not require dis-
parity information but only supports small disparity ranges,
does not allow for local disparity manipulations, and may
prefilter visually important content.

Depth adaptation has been proposed to adjust exist-
ing stereo images based on various remapping operators
[LHW∗10,DRE∗12b,DRE∗12a]. Our approach is similar to
Lang et al. [LHW∗10] in the sense that we use IDW, which
they introduced initially, as well as the notion of saliency to
control the warping. However, they did not target MAD and
the particular specifics of view interpolation with overall dis-
parity range expansion. Further, they did not cover local dis-
parity gradient enhancements. Didyk et al. [DRE∗12b] tar-
gets MAD among other applications, but filtering images is
not always acceptable. Our method puts artistic intent over
perception, as we try to preserve volume of important scene
elements, while accepting to lose some JND of depth per-
ception in less important image regions.

3. Subjective Experiment

Multiview displays usually exhibit a very shallow depth of
field, but content is often displayed using substantially big-
ger depth ranges. Despite the violation of the sampling re-
quirements, only a small amount of aliasing artifacts is usu-
ally perceived. We therefore investigate the relationship be-
tween image disparity and perceived quality with a subjec-
tive user study. The goal of the study is to determine the
sensitivity of spectators to such depth ranges that exceed the
display’s depth of field. The outcome of this study is then
used as a guideline for disparity mapping in our content cre-
ation pipeline.

In our experiment, the stimuli consist of the 8 synthesized
views of a simple disc with the radius of 100 pixels at a cer-
tain distance, displayed against a background positioned at
the display plane (Figure 2).

Both the disc and the background were covered with a
number of different grayscale textures that varied in spatial
contrast frequency and stereoscopic disparity. The textures
were generated by applying various low-pass filters to ran-
dom per-pixel noise in the frequency domain utilizing the
Discrete Cosine Transform.

Our setup was chosen to resemble a regular view-
ing experience at a home theater system. All stim-
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Figure 3: Subjective data showing the relation of spatial fre-
quency and disparity to mean preference score. The blue ar-
row denotes the depth of field of our display.

uli were presented on an 8-view, 47′′ Alioscopy dis-
play with an approximate depth of field of ±98mm
( [ZMDP06]), which corresponds to a disparity maxi-
mum of ±2.66 pixels between two consecutive views.

Figure 2: A depic-
tion of how our
stereoscopic stimuli
is perceived by the
subjects.

During the experiment the sub-
jects were comfortably seated on
a chair 4.3 meters away from the
display. Each subject was given
a task that consisted of rating the
perceived crosstalk and angular
aliasing on a scale of 0 to 9 using
a computer keyboard. Our sub-
jects were 10 males and 6 fe-
males from age 25 to 36. In or-
der to prevent the commonly en-
countered anchoring problems
in rating studies, each subject
performed the entire experiment
twice, and only the results of the
second iteration were used. The subjects were free to spend
as much time as they needed at each trial, and most subjects
finished the experiment in 20-25 minutes.

The mean preference scores over all subjects are shown
in Figure 3. The main finding of this study is that disparity
has a significant influence on preference score, which is a
direct result of depth of field of the multiview display (see
bandwidth analysis of Zwicker et al. [ZMDP06]), and not
due to other effects such as vergence-accomodation conflict
which has a much larger comfort zone of about 306 pix-
els [SKHB11]. We also found that, to a lesser degree, spa-
tial frequency has also a statistically significant influence on
preference score, especially for the middle frequency range.
Furthermore, our study shows that disparity ranges of ×2
the display depth of field do only create noticeable artifacts
for higher texture frequencies. The quality then degrades al-
most linearly for even higher disparities. Other lenticular or
parallax-barrier based multiview displays will most likely
exhibit similar characteristics.
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Figure 4: Overview of our stereo-to-multiview conversion pipeline. The input stereo and disparity video is analysed for saliency,
and edges in a first step. Next, a global non-linear mapping transforms the input disparity space into the disparity range of the
target display. The subsequent local gradient enhancement step then recovers flattened image regions of important objects in a
third step. Finally, our optimized image domain warping is used to synthesize the output views for the multiview display.

Using the data shown in Figure 3 we can estimate pleas-
ant disparity ranges by taking the spatial frequency of the
content into account and choosing a suitable threshold pref-
erence score. In practice, we chose a value of maximum ±5
pixels disparity for our display to achieve good image qual-
ity while allowing for twice the supported depth range.

4. Method

Our algorithm converts stereo 3D input into multiview video
output optimized for autostereoscopic displays. The overall
pipeline is illustrated in Fig. 4. In a first step, the overall
disparity space is globally transformed to a new disparity
range suitable for the display device limits. Next, the glob-
ally transformed disparities are locally enhanced for salient
objects. Then, the transformed disparity map is used to per-
form view interpolation to generate the final multiview out-
put. A detailed description of our inputs can be seen in Sec-
tion 5. In the following, we will give more details on the
individual steps.

4.1. Global Disparity Mapping

The disparity range of professional stereo content is usually
not very well suited for MADs, which tend to support a sig-
nificantly smaller disparity range. Due to inherent difficul-
ties of disparity estimation, conversion of live action content
creates specific challenges. Estimated disparity maps may
contain many kinds of artifacts and imperfections, of which
cardboard effects and estimation failures are most severe. In
the case of cardboarding, gradients across objects are of-
ten missing, which can result in flat disparity regions par-
titioned into multiple layers. Furthermore, estimation fail-
ures can lead to drastic changes in disparity or holes in the
estimation †. Gradient-based approaches such as described
in the next section won’t work well alone with such non-
continuous content, and we therefore propose to use a two-
step mapping.

Our pipeline starts by globally transforming the input dis-
parity space into a new piece-wise linear disparity space that

† Please compare input disparity maps of synthetic vs. live action
content in our supplemental video.

better suits the device-dependent limits of MADs. Our map-
ping works equally well for live-action input (with piece-
wise linear disparity maps) as well as rendered content (with
continuous disparity maps). Our piece-wise linear mapping
uses saliency characteristics of the input content to keep im-
portant regions as uncompressed as possible. The unavoid-
able distortion is hidden in areas which are less important.

In the following, we will describe the global mapping.
Assuming the original disparity map contains values in
a space [dmin,dmax], the mapping is then a function f :
[dmin,dmax] → [d′min,d

′
max]. For our piecewise linear ap-

proach, we divide the domain of f into n equally sized bins
which are linearly mapped to bins in the co-domain. Thus
the linear function fi : [di

min,d
i+1
max]→ [d′imin,d

′i+1
max ] is of the

form fi(x) = ∆ix + αi. If we define R = di+1
max − di

min and
R′ = d′i+1

max − d′imin, a linear function would be equivalent to
a single bin with ∆ = R′/R. We would like our ∆i to satisfy
the following conditions:

n

∑
i=1

∆i = ∆ , ∆i ≥ 0,∀i. (1)

This ensures that we map our disparities exactly into the tar-
get space and that the three dimensional position of pixels
is never reversed, i.e. a pixel will never be mapped to a po-
sition in front of another pixel if it was behind it originally.
Given these conditions and naming si the sum of the saliency
values of all pixels in the bin i, we propose the solution:

∆i =
si

∑
n
j=1 s j

∆k+(1− k)
∆

n
. (2)

The coefficient k ∈ [0,1] controls by how much a given bin
can be compressed. A value of 0 defaults the mapping into a
simple linear mapping and a value of 1 means bins with no
salient pixels will have their disparity completely removed.
An illustration showing the result of this algorithm can be
seen in Fig. 5. The method described above is directly related
to the saliency provided for the scene, and as such is very
sensitive to temporal instability in saliency. To prevent the
global mapping function from becoming temporally unsta-
ble, saliencies are filtered out over several frames which en-
sures that the disparity re-mapping is similar for consecutive
images. A related approach was proposed in [LHW∗10],
which integrates over saliency instead of computing a piece-
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Figure 5: The top right image shows our piecewise lin-
ear mapping function with the respective ∆i values per bin
shown on the top left. The bottom images depict the saliency
map (left) and the corresponding disparity map (right).

wise linear function, and does not provide a compression
safeguard parameter k.

Fig. 6 shows a result of such piecewise linear global map-
ping. The left side shows results of a linear mapping. Our re-
sults are shown on the right. Both are mapped into a fraction
of the input disparity range. Our mapping function nicely
compresses empty space, while retaining disparity in more
salient regions leading to an enhanced depth experience.

Other operators. Similar to [LHW∗10] our pipeline sup-
ports arbitrary global mappings which can be specified by
the user or predefined for a certain system. In principle, all
C0-continous and monotonically increasing functions are al-
lowed, such as operators proposed by [DRE∗12b], or non-
linear operators proposed in [LHW∗10].

4.2. Local Disparity Gradient Enhancement

After the global disparity mapping we perform an additional,
local mapping step. Our main goal is to locally enhance
disparity gradients in important image regions for an in-
creased depth perception. We formulate our goal as set of
constraints, that can then be solved for the locally enhanced
disparity map DL with a least-squares energy minimization.
A result of this mapping can be seen in Figure 7. In the fol-
lowing, we will use the ensuing notation. Let x∈R2 = (x,y)
be an image position, and D(x) ∈ R be a disparity map.

Gradient constraints. As our central constraint, we en-
force the mapped disparity gradients of salient image regions
to be similar to the gradients of the input disparity map DI:

∂

∂x
DL(x) = α

∂

∂x
DI(x) , (3)

∂

∂y
DL(x) = α

∂

∂y
DI(x) . (4)

The global parameter α is then a constant factor to control
the overall disparity enhancement, and is dependent on the
disparity compression from the previous global mapping. In
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Figure 6: Results of linear (left) and our saliency-based
piece-wise linear (right) global mapping. The histograms
show how our approach compresses unimportant space,
while retaining volume of salient objects as good as possible.

general, we propose to use a factor of α= 2(drange/d′range), where
drange and d′range are the disparity ranges before and after the
global mapping, respectively.

Global mapping constraints. In addition, we enforce the
overall mapping to follow the global mapped disparity DG
as closely as possible:

DL(x) = DG(x) . (5)

Least squares energy minimization. The constraints de-
fined in the above equations can then be rewritten as con-
straints of a linear least squares energy minimization. Let
S(x,y) : R2→ (0,1] be a saliency map that classifies impor-
tant image regions. A small amount of saliency is added to
all pixels to prevent null weights in the constraints. Equa-
tions (3) and (4) can then be rewritten as

Eg(DL) = ∑
x

S(x) ||∇DL(x)−α∇DI(x)||2 , (6)

where ∇ is the vector differential operator, and ||·|| defines
the vector norm. The global mapping constraints (5) are re-
formulated as

El(DL) = ∑
x
(DL(x)−DG(x))

2 . (7)

The optimum linear least squares solution for DL(x) can
then be found by minimizing

argmin
DL

(wgEg (DL)+wlEl (DL)) . (8)

Note, that this minimum can be computed by solving a lin-
ear system, see [GRG∗13] for a good overview. The system
defined in (8) will try to enhance the gradients of the salient
regions, while trying to enforce all other disparity values to-
wards their globally mapped version DG. Disparity edges,
i.e. strong disparity gradients between objects at different
depths, can lead to a high contribution to the squared error,
and thus such disparity edges would be enforced strongly as
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Figure 7: Local disparity gradient enhancement. (a) shows a
linearly mapped disparity map of a scene; (b) shows the dis-
parity map adapted by our algorithm; in (c) and (d) two gen-
erated views are displayed in anaglyph, in a disparity range
similar to two adjacent views of a MAD display. Notice how
the cardboarding effect flattens out the cube in (c).

well. As we are only interested in gradients within the ob-
jects, these disparity edges need special treatment which we
will discuss in the following. This step is different from pre-
vious methods, such as [LHW∗10].

Disparity edges. The gradient constraint can lead to arti-
facts around disparity edges due to very high disparity gradi-
ents between objects. We thus remove the influence of such
disparity edges to enforce the gradient enhancement within
objects only. Luckily, disparity edges can usually be detected
quite robustly on the disparity map. We use a combination of
a simple threshold function and a more sophisticated Canny
edge detector on the input disparity DI to determine the set of
edge pixels E. Subsequently, we enforce the salience value
to be zero at these edge pixels S(x) = 0 for x ∈ E.

Fig. 7 shows a result of local disparity gradient enhance-
ment. In our result the cubes have more volume, while the
linearly mapped version appears more flat.

4.3. View Interpolation

We developed an extension of image domain warp-
ing [LHW∗10, SWL∗13] for stereo-to-multiview interpola-
tion. The previously computed optimized disparity maps are
used as main input to control this process. Based on opti-
mized disparity, we formulate a constrained energy mini-
mization problem, which is solved by linear least squares
optimization (similar to previous section). The results are
warping functions, which deform the input views to generate
the novel in-between views. In addition to disparity, we ap-
ply conformal constraints that penalize local deformations,
and line constraints that disadvantage line bending.

In the following, we will describe the particular con-
straints in more detail. The optimized disparity map D(x) :
R2 is used to compute a warp w(x) : R2 → R2, where the
deformations should be hidden in visually less important re-

Figure 8: A pair of input figures is warped to a set of mul-
tiview results. Notice that the results are now mapped to a
completely new disparity range. The original figures are not
among the results, which are created by interpolating be-
tween two warps, represented here with red arrows.

gions. The warp w(x) will then describe the optimal trans-
formation of the input view corresponding to D(x).

Disparity constraints. The disparity constraints can be
viewed as positional constraints: every point in the image
should be translated to the position described by its disparity:

w(x) =
[

x+D(x)
y

]
. (9)

Conformal constraints. The conformal constraints pe-
nalize deformations, and are mainly evaluated on visually
salient image regions. A constraint of the form ∂

∂x w(x)(x) = 1
prescribes to avoid any compression or enlargement along
the x-direction, whereas a constraint of the form ∂

∂x w(x)(y) =
0 penalizes deformations that result in a pixel-shear opera-
tion. All four constraints are then formulated as:

∂

∂x
w(x) =

[
1
0

]
,

∂

∂y
w(x) =

[
0
1

]
. (10)

Depth ordering constraints. Because disparity edges of-
ten have gradients that are very different from their neigh-
bors, we use edge detection to reduce their saliency values,
often preventing artifacts. For this we use the same edge map
as the one previously calculated for Section 4.2. Addition-
ally, pixel overlaps where the correct order of pixels along a
line is reversed often occurs for large warps. This may gener-
ate large distortions in the warp optimization step. To resolve
such conflicts we perform a simple check where, in case of
an overlap, the occluded pixel is moved to the coordinate of
its occluder.

Temporal constraints. Applying all constraints results in
output images that have correct disparity values and hide dis-
tortions in visually non-salient areas. However, when apply-
ing this method for each frame of a video sequence, small
changes in the input might result in larger changes within
the optimization, which may lead to disturbing temporal ar-
tifacts. We try to remedy this by introducing a temporal con-
straint that takes into account the warps calculated for pre-
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vious frames as an additional disparity constraint. This ef-
fectively makes these constraints three-dimensional, linking
temporally separated pixels, as shown below:

wt(x) = wt−1(x). (11)

Multiview generation for remapped disparity. Our final
goal is to generate multiview content related to the new, op-
timized disparity maps. This is done in a 2-step approach, as
outlined in Figure 8. The first step maps the input images to
new virtual images corresponding to the optimized disparity.
The second step then does the actual interpolation. This dis-
tinction is only conceptional. In practice both warps are done
at once. Typically the overall disparity range from leftmost
to rightmost view of an MAD is larger than the disparity
range of the input stereo pair. Our optimized disparity maps
carry the information about this necessary expansion of the
overall disparity range, which is illustrated by the blue ar-
rows in Figure 8. Within the expanded range we then linearly
interpolate from left and right input view as illustrated by the
red arrows in Figure 8. The disparity range between each im-
age pair of the resulting multiview image set is then a frac-
tion of the input disparity range. Such expansion of the over-
all disparity range with intermediate view rendering would
not be easily possible with DIBR, due to dis-occlusions,
which require in-painting. For this reason we use IDW in-
stead, which does not create dis-occlusions and can handle
disparity range expansions without noticeable artefacts. This
step is an extension of the algorithm in [LHW∗10].

Assume we are generating the first set of multiview im-
ages based on the left input image only. In the first step,
the adjustments to the input image according to the disparity
change have to be determined. To achieve this, we compute
a first warp wext(x) using the disparity map Dext = DI−DL.
This warp then describes the transformation of the left image
to its adjusted new left image that corresponds to the dispar-
ity map DL. In a second step, a warp wcen(x) is computed
that determines the transformation from the left input image
to the center view between the left camera and right camera.

Both warps wext(x) and wcen(x) can then be used to com-
pute warps w(a) that transform the left input image to a first
set of multiview images

w(a) = awext(x)+(1−a)wcen(x) for a = [0..1], (12)

whereas a = 0 corresponds to the left most image, and a = 1
corresponds to the center image. The second set of multiview
images can then be generated in the same manner based on
the right input view.

5. Experiments and Results

We evaluated our pipeline on a variety of synthetic and
filmed stereoscopic video sequences. For synthetic scenes,
we use ground truth disparity maps and saliency maps ren-
dered from object annotations. This allows the artist to de-

cide which objects should retain as much depth as possi-
ble by assigning an importance value to these objects. The
importance values are then rendered into a saliency map.
For the filmed scenes, we either use automatically gener-
ated depth maps [ZRM∗] (Musicians, Band, Poker) or com-
puted and additionally hand-tuned depth maps [WFY∗10]
(Ballons, Kendo). All filmed scenes use an extended version
of a contrast-based saliency algorithm [PKPH12] that em-
ploys an edge-aware spatiotemporal smoothing [LWA∗12]
to achieve temporal consistency. Most steps of our pipeline
are implemented in Matlab, only the actual warp rendering
to generate the interpolated views has been implemented in
OpenGL in C++. Multiview image sequences can be gener-
ated in 15 - 600 seconds per frame, depending on the input
size and resolution of the image warp grid.

For all scenes, we evaluated the simple linear mapping
and our saliency-based mapping. The view to view disparity
range for our target display is determined using the results
of our user study as ±5 pixels. Figure 9 shows anaglyph re-
sults accompanied with the associated disparity maps and
histograms. Our method clearly enhances the depth for the
salient image regions, and effectively compresses less salient
image regions as well as empty disparity ranges. The results
generated using our method show rounder, more voluminous
objects, and are thus able to convey a deeper depth expe-
rience even for such small depth ranges. Figure 10 shows
generated multiview images for additional scenes. As can be
seen, our adapted warping method is able to hide distortions
in visually unimportant regions, and avoids distracting arti-
facts even for scenes with inaccurate estimated depth maps.

Figure 11 shows a comparison between linear map-
ping, our mapping algorithm, and another perceptually-
based disparity compression algorithm [DRE∗12b]. Linearly
mapping the input range results in flattening the whole
scene uniformly, which results in loss of depth percep-
tion and cardboarding. Both our method and Didyk et al.’s
method [DRE∗12b] compresses to the same overall dispar-
ity range, but provide more depth perception. In contrast to
our method, Didyk’s method uses a perceptual model for no-
ticeable differences based on disparity, luminance and con-
trast, whereas our model focuses on salient image regions.
While both methods lead to an increased depth perception,
our method enhances the depth on the front-most persons
better while flattening less salient parts. Didyk’s method on
the other hand is able to retain “just enough” disparity to
perceive depth uniformly across the image.

While our method generates improved results compared
to a simple linear mapping, there are also some drawbacks.
First, our method relies completely on saliency and will not
be able to produce improved results if the saliency compu-
tation fails. Fortunately, our method will fall back to a sim-
ple linear mapping in the worst case, due to our compression
safeguard. Second, our method is computationally expensive
and not yet ready for real-time applications. In addition, our
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rendering method tries to minimize distortions by distribut-
ing the error over possibly large, unimportant backgrounds.
As a result, our constraints might lead to a small jump be-
tween the two middle views, which could be resolved at the
expense of other artifacts.

6. Subjective Validation

We validated our method using subjective testing, where
we showed multiview video content on an 8-view 47′′

Alioscopy display to our subjects. Our stimuli comprised
of result pairs using naïve linear mapping as well as our
method, presented in random order. In total, 7 video se-
quences where displayed. After watching the two stimuli in
each trial, the subjects were queried on (i) which of the two
stimuli has more depth, and (ii) which one has more arti-
facts. Our validation experiment had 20 participants naïve to
the purpose of the study.

Figure 12 shows the responses of each subject averaged
over the video scenes. The top figure shows that among the
tested subjects there was a strong opinion that our results
have more depth. Pearson’s chi-square goodness-of-fit anal-
ysis demonstrated a statistically significant opinion that our
method has more depth, χ

2(1, 140) = 37.03, p<.01. In total,
76% of test subjects stated our method to have more depth.
The bottom of Figure 12 shows the result for the second
question. There was no statistically significant preference,
χ

2(1, 140) = 1.83, p>.1. Among all votes 56% indicated our
method has more artifacts, and 46% indicated that the naïve
mapping had more artifacts.

We performed Anova analysis to determine if there is a
main effect due to either subjects or video sequences. For
the depth assessment task, the p values were found 0.9717
for subjects and 0.3036 for video sequences, indicating that
both factors do not have a significant effect on our results
(both � 0.05). Same was found to be true for the artifact
assessment task, where the p values were 0.8361 and 0.7352
respectively.

In conclusion, our subjective data shows that our method
consistently produces results with more perceived depth
compared to the naïve mapping, without causing a signifi-
cant difference in image quality.

7. Conclusion

We presented a saliency-based stereo-to-multiview conver-
sion method that generates optimized content for autostereo-
scopic multiview displays. In a first step, we perform a
global disparity mapping that flattens out unimportant re-
gions while trying to retain important image regions. In a
second step, we locally enhance the disparity gradients for
visually salient regions. Finally, we employ an extended im-
age domain warping algorithm to render the output views
according to the modified disparity maps.
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Figure 12: Our validation study revealed a strong opinion
among the tested subjects that our method resulted in more
perceived depth compared to the naïve mapping (top). The
study also showed no clear trend on either methods produc-
ing more artifacts than the other.

As shown in our final validation study, our method clearly
improves the amount of perceived depth compared to a sim-
ple linear mapping. Compared to other state-of-the-art meth-
ods, our approach is more faithful and retains the artistic in-
tent. In addition, our extended image domain warping is ro-
bust to temporally unstable and inaccurate disparity maps. In
our initial user study we validated theoretical limitations on
disparity ranges of autostereoscopic displays, while showing
that those can be relaxed in practice to some extent. Never-
theless for conversion of typical stereoscopic input, signifi-
cant disparity remapping is necessary.

8. Acknowledgements

We would like to thank Maurizio Nitti for providing con-
tent for this paper. Additional thanks go to all the partici-
pants of our user studies and the researchers at DRZ and
ETH for their help. The research that led to this paper was
supported in part by the European Commission under the
Contract FP7-ICT-287723 REVERIE.

References

[CTCS00] CHAI J.-X., TONG X., CHAN S.-C., SHUM H.-Y.:
Plenoptic sampling. In SIGGRAPH (2000), pp. 307–318. 2

[DHS∗05] DURAND F., HOLZSCHUCH N., SOLER C., CHAN
E., SILLION F. X.: A frequency analysis of light transport. ACM
Transactions on Graphics 24 (2005), 1115–1126. 2

[DRE∗12a] DIDYK P., RITSCHEL T., EISEMANN E.,
MYSZKOWSKI K., SEIDEL H.-P.: Apparent stereo: The
cornsweet illusion can enhance perceived depth. In Human
Vision and Electronic Imaging XVII, IS&T/SPIE’s Symposium
on Electronic Imaging (Burlingame, CA, 2012), pp. 1–12. 3

[DRE∗12b] DIDYK P., RITSCHEL T., EISEMANN E.,
MYSZKOWSKI K., SEIDEL H.-P., MATUSIK W.: A luminance-
contrast-aware disparity model and applications. ACM
Transactions on Graphics 31, 6 (2012), 184:1–184:10. 2, 3, 5, 7,
10

© 2014 The Author(s)
Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.



Chapiro et al. / Optimizing Stereo-to-Multiview Conversion for Autostereoscopic Displays

Figure 9: Comparison between linear mapping (top) and our saliency based mapping (bottom), shown in anaglyph with their
associated disparity map and histogram. Our method retains more depth volume for the important parts of the scene while
flattening out less important parts as well as empty space. Our mapping effectively creates more apparent depth within the same
overall depth limits.

[DSAF∗13] DIDYK P., SITTHI-AMORN P., FREEMAN W. T.,
DURAND F., MATUSIK W.: Joint view expansion and filtering
for automultiscopic 3d displays. ACM Transactions on Graphics
(Proceedings SIGGRAPH Asia 2013, Hong Kong) 32, 6 (2013).
3

[GRG∗13] GREISEN P., RUNO M., GUILLET P., HEINZLE S.,
SMOLIC A., KAESLIN H., GROSS M.: Evaluation and FPGA
implementation of sparse linear solvers for video processing ap-
plications. Transactions on Circuits and Systems for Video Tech-
nology 23, 99 (2013). 5

[Ive03] IVES F.: Parallax stereogram and process for making
same. U.S. Patent No. 725,567, 1903. 2

[KJ07] KONRAD J., JAIN A.: Crosstalk in automultiscopic 3-d
displays: blessing in disguise? Stereoscopic Displays and Virtual
Reality Systems XIV 6490, 1 (2007). 2

[LHW∗10] LANG M., HORNUNG A., WANG O., POULAKOS S.,
SMOLIC A., GROSS M.: Nonlinear disparity mapping for stereo-
scopic 3D. ACM Transactions on Graphics 29, 4 (2010), 75:1–
75:10. 3, 4, 5, 6, 7

[Lip08] LIPPMANN G. M.: La photographie integrale. Comptes-
Rendus 146 (1908), 446–451. 2

[Lue12] LUEDER E.: 3D Displays. Wiley, 2012. 2

[LWA∗12] LANG M., WANG O., AYDIN T., SMOLIC A., GROSS
M.: Practical temporal consistency for image-based graphics ap-
plications. ACM Transactions on Graphics 31, 4 (2012), 34:1–
34:8. 7

[MWA∗13] MASIA B., WETZSTEIN G., ALIAGA C., RASKAR
R., GUTIERREZ D.: Display adaptive 3d content remapping.
Computers & Graphics 37 (2013), 983–996. 2

[MWDG13] MASIA B., WETZSTEIN G., DIDYK P., GUTIER-

REZ D.: A survey on computational displays: Pushing the bound-
aries of optics, computation, and perception. In Computers &
Graphics (2013), vol. 37, pp. 1012–1038. 2

[PKPH12] PERAZZI F., KRÄHENBÜHL P., PRITCH Y., HOR-
NUNG A.: Saliency filters: Contrast based filtering for salient
region detection. In IEEE CVPR (2012), pp. 733–740. 7

[RHS∗12] RANIERI N., HEINZLE S., SMITHWICK Q., REETZ
D., SMOOT L. S., MATUSIK W., GROSS M.: Multi-layered
automultiscopic displays. Computer Graphics Forum 31, 7pt2
(2012), 2135–2143. 2

[RHZN11] RAMACHANDRA V., HIRAKAWA K., ZWICKER M.,
NGUYEN T.: Spatioangular prefiltering for multiview 3D dis-
plays. TVCG 17, 5 (2011), 642–654. 2

[SKHB11] SHIBATA T., KIM J., HOFFMAN D. M., BANKS
M. S.: The zone of comfort: redicting visual discomfort with
stereo displays. Journal of Vision 11, 8 (2011), 8:1–8:29. 3

[SMD∗08] SMOLIC A., MÜLLER K., DIX K., MERKLE P.,
KAUFF P., WIEGAND T.: Intermediate view interpolation based
on multiview video plus depth for advanced 3D video systems. In
Proc. ICIP 2008, IEEE International Conference on Image Pro-
cessing (2008). 2, 3

[SS13] SINGH D. S. K., SHIN J.: Real-time handling of existing
content sources on a multi-layer display, 2013. 2

[SWL∗13] STEFANOSKI N., WANG O., LANG M., GREISEN P.,
HEINZLE S., SMOLIC A.: Automatic view synthesis by image-
domain-warping. Image Processing, IEEE Transactions on 22, 9
(2013), 3329–3341. 2, 3, 6

[THKM13] TOMPKIN J., HEINZLE S., KAUTZ J., MATUSIK
W.: Content-adaptive lenticular prints. In ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2013) (July 2013), vol. 32.
2

© 2014 The Author(s)
Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.



Chapiro et al. / Optimizing Stereo-to-Multiview Conversion for Autostereoscopic Displays

Figure 10: Three views for one frame, generated using our pipeline. Despite the challenging disparity maps, our method is able
to hide distortion in visually less important regions and is able to generate novel views without many noticable artifacts.

Figure 11: Comparison between linear mapping, our saliency-based mapping, and the mapping of Didyk et al. [DRE∗12b] (from
left to right). Our mapping is able to increase the perceived depth best, while flattening out lesser important regions. Didyk’s
method on the other hand retains a noticeable depth difference across the image. Notice the carboarding effect happening in the
insets on the left and right.

[WFY∗10] WILDEBOER M., FUKUSHIMA N., YENDO T.,
TEHRANI M., TANIMOTO M.: A semi-automatic multi-view
depth estimation method. In Visual Communications and Image
Processing (2010). 7

[WLGH12] WETZSTEIN G., LANMAN D., GUTIERREZ D.,
HIRSCH M.: Computational displays. In ACM Siggraph Course
Notes (2012). 2

[WLHR11] WETZSTEIN G., LANMAN D., HEIDRICH W.,
RASKAR R.: Layered 3D: Tomographic image synthesis for
attenuation-based light field and high dynamic range displays.
ACM Transactions on Graphics 30, 4 (2011). 2

[WLHR12] WETZSTEIN G., LANMAN D., HIRSCH M.,
RASKAR R.: Tensor Displays: Compressive Light Field Syn-
thesis using Multilayer Displays with Directional Backlighting.

ACM Transactions on Graphics 31, 4 (2012), 1–11. 2

[ZMDP06] ZWICKER M., MATUSIK W., DURAND F., PFISTER
H.: Antialiasing for automultiscopic 3D displays. In Eurograph-
ics Symposium on Rendering (2006). 2, 3

[ZRM∗] ZILLY F., RIECHERT C., MÜLLER M., EISERT P.,
SIKORA T., KAUFF P.: Real-time generation of multi-view video
plus depth content using mixed narrow and wide baseline. Jour-
nal of Visual Communication and Image Representation. 7

© 2014 The Author(s)
Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.


