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In this paper we present a novel formulation of progressive photon map-
ping. Similar to the original progressive photon mapping algorithm, our ap-
proach is capable of computing global illumination solutions without bias
in the limit, and it uses only a constant amount of memory. It produces high
quality results in situations that are difficult for most other algorithms, such
as scenes with realistic light fixtures where the light sources are completely
enclosed by refractive material. Our new formulation is based on a proba-
bilistic derivation. The key property of our approach is that it does not re-
quire the maintenance of local photon statistics. In addition, our derivation
allows for arbitrary kernels in the radiance estimate and includes stochastic
ray tracing algorithms. Finally, our approach is readily applicable to volu-
metric photon mapping. We compare our algorithm to previous progressive
photon mapping approaches and show that we achieve the same conver-
gence to unbiased results, even without local photon statistics.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Raytracing

Additional Key Words and Phrases: Global illumination, photon mapping

1. INTRODUCTION

Photon mapping [Jensen 2001] is one of the most popular algo-
rithms to numerically approximate solutions of the rendering equa-
tion [Kajiya 1986]. It is based on Monte Carlo integration, simi-
lar to related algorithms such as path tracing [Kajiya 1986] and its
variants [Lafortune and Willems 1993] or Metropolis light trans-
port [Veach and Guibas 1997]. One of the main advantages of pho-
ton mapping is that, at equal computational cost, it can often pro-
duce images with less noise than other Monte Carlo algorithms.
Photon mapping is consistent, in the sense that the numerical ap-
proximation converges to an exact solution as the number of Monte
Carlo samples goes to infinity. In contrast to other Monte Carlo
techniques, however, it is biased, which means that the expected
error of any approximation with a limited number of samples is
non-zero.
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The reason for the computational efficiency of photon mapping is
that it caches and reuses Monte Carlo samples. In a first stage of the
algorithm it caches the samples, or photons, in a spatial datastruc-
ture, the photon map. In a second stage these samples are reused in
an approximation procedure, called radiance estimation, which ba-
sically counts the number of photons per circular area with a certain
radius. This approximation, however, acts similarly to a low-pass
filter on the cached samples. It always returns an overly smooth
approximation of the true radiance, and hence causes the non-zero
expected error, or bias, of the solution. This bias only vanishes in
theory, if it were possible to cache an infinite number of photons.

Hachisuka et al. [2008; 2009] recently presented progressive pho-
ton mapping (PPM), a simple strategy that breaks this memory bot-
tleneck. They incrementally update a sequence of photon mapping
results, where each step in the sequence uses a limited number of
photons. Over this sequence, the radiance estimation radius is re-
duced in each step. The key is to reduce the radius such that, in
the limit, the incremental updates converge to an exact, unbiased
solution of the rendering equation. Hachisuka et al. achieve this by
maintaining local statistics for each region where a radiance esti-
mate needs to be evaluated. The statistics include for example the
number of photons collected in the region. In the simplest case,
the regions are the points seen through each pixel. In stochastic
PPM [Hachisuka and Jensen 2009], the regions are generalized to
render effects such as glossy reflections or depth of field.

In this paper, we introduce a probabilistic derivation of progres-
sive photon mapping. The key property of our approach is that it
does not require the maintenance of local statistics. Therefore, we
could call our approach memoryless progressive photon mapping.
We show that each step in the sequence of photon mapping results
can be performed completely independently. As a benefit, we can
compute each step in parallel or with a standard photon mapper
used as a black box. In addition, our derivation allows for arbitrary
kernels in the radiance estimate. We also present an asymptotic con-
vergence analysis that reveals the trade-off between vanishing vari-
ance and expected error, which is controlled using a single param-
eter. Our approach includes the scenario of stochastic progressive
photon mapping in a simple and straightforward manner. Finally,
we demonstrate that it is readily applicable to volumetric photon
mapping, which has not been shown before. We compare our al-
gorithm to previous progressive photon mapping approaches and
show that we achieve the same convergence to unbiased results,
even without local statistics.

In summary, we make the following contributions:

—a novel derivation of progressive photon mapping that is based
on a probabilistic framework and includes stochastic PPM,

—an asymptotic convergence analysis yielding convergence rates
for variance and expected error,

—a memoryless algorithm that does not require the maintenance
of statistics, computes each step independently and if desired in
parallel, works with arbitrary kernels, and is trivial to extend to
volumetric photon mapping.
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2. PREVIOUS WORK

Realistic rendering in computer graphics is governed by the render-
ing equation [Kajiya 1986]. Most standard algorithms to approxi-
mate solutions of the rendering equation, such as path tracing [Ka-
jiya 1986], bi-directional path tracing [Lafortune and Willems
1993; Veach and Guibas 1995], photon mapping [Jensen 2001;
Jensen and Christensen 1998], or Metropolis light transport [Veach
and Guibas 1997; Pauly et al. 2000; Cline et al. 2005] are based
on Monte Carlo integration. These methods are popular because of
their conceptual simplicity, their generality, and because they lead
to high quality results if enough Monte Carlo samples are evalu-
ated.

Monte Carlo methods randomly sample light paths that connect a
point on a light source to a point on the image sensor. The various
algorithms differ mainly in the way these random paths are gener-
ated. Unbiased methods such as path tracing and its variations and
Metropolis light transport always sample complete paths connect-
ing a light source and the sensor. Biased methods such as photon
mapping include an interpolation step, known as radiance estima-
tion, to transport light between incomplete sub-paths. The disad-
vantage of biased methods is that they lead to non-zero expected
error, which manifests itself as blurriness in the results. On the other
hand, there are certain types of light paths that are very challenging
to sample using unbiased methods. These are paths where emitted
light is transported via specular surfaces to a diffuse surface, and
from there again via specular surfaces to the sensor. In fact, if the
aperture of the sensor is a pinhole and the source is a point light,
then the probability to sample such a path is zero in any unbiased
method. Although this scenario is not physically plausible, if the
light and sensor aperture are small, it may still require an imprac-
tical number of samples to obtain an acceptable solution [Veach
1998]. Hachisuka et al. [2008] point out common examples for
such situations, such as sunlight seen on the bottom of a swim-
ming pool, or specular surfaces in a room illuminated by a light
source enclosed in glass, which is how many types of light fixtures
are constructed.

Photon mapping [Jensen 2001] is a biased method that often leads
to results with less obvious artifacts in such situations, at the cost of
non-zero expected error. The key idea in photon mapping is to sam-
ple sub-paths starting from light sources and cache these samples,
or photons, in a spatial data structure. In a second step, it samples
sub-paths from the sensor and connects them to the light sub-paths
on non-specular surfaces. This is achieved using radiance estima-
tion, which acts on the cached photons similarly as a smooth re-
construction filter. To avoid this smoothing effect and obtain unbi-
ased results, however, it would be necessary to sample and store
infinitely many light sub-paths. There are a number of improve-
ments of the standard radiance estimation approach that attempt to
reduce its bias [Schregle 2003; Herzog and Seidel 2007; Herzog
et al. 2007; Spencer and Jones 2009]. Radiance estimation has also
been extended to volumetric media [Jensen and Christensen 1998;
Jarosz et al. 2008], and to time dependent photon mapping [Cam-
marano and Jensen 2002]. But all these techniques still suffer from
the same fundamental limitation that infinitely many photons need
to be stored to obtain unbiased solutions.

Our work is inspired by progressive photon mapping
(PPM) [Hachisuka et al. 2008] and the more recent stochastic
PPM approach [Hachisuka and Jensen 2009]. These techniques
have shown how to break the memory bottleneck of photon
mapping. In theory, they can achieve unbiased results under

limited memory resources. Concurrent to our work, this approach
has also been generalized to include arbitrary smooth kernels for
radiance estimates [Hachisuka et al. 2010]. Here we derive similar
algorithms but based on a more general, probabilistic framework.
Our approach has the advantages that it does not require the
maintenance of local statistics, it works with arbitrary kernels,
and it is readily applicable to other radiance estimates such as
volumetric radiance estimation. Although this is not impossible
with the original PPM approach, it has not been shown yet. We also
believe our approach leads to simpler algorithms because it does
not require the storage of local statistics.

3. PRELIMINARIES: VARIANCE AND EXPECTED
ERROR OF RADIANCE ESTIMATION

In this section we analyze the variance and expected error of ra-
diance estimation in photon mapping from a probabilistic perspec-
tive. You find an overview of our notation in Table I. These results
will form the basis for our derivation in the next section. Radiance
estimation approximates the reflected radiance L(x, ω), where x
represents a surface location and ω an outgoing direction, by com-
puting a local weighted average of incident radiance multiplied
with the BRDF [Veach 1998; Pharr and Humphreys 2004]. Photon
mapping computes a Monte Carlo estimate of this measurement,

L(x, ω) ≈ 1

M

M∑
j=1

kr(xj − x)γj . (1)

The sum is over all M photons that were emitted in the scene, and
xj denote the photon positions. The kernel kr is a function that de-
termines the weight of each photon in the local average. It is related
to a canonic kernel k via a linear scaling factor r that specifies the
size of the local averaging window. For any r, the kernel has unit
integral and depends on the difference xj −x between photons po-
sitions xj and the location of the estimate x. The photon positions
are generated using a random process, i.e., Monte Carlo particle
tracing. They are distributed over the scene surfaces according to
a certain probability density, which we will denote pl(x). Finally,
γj is the contribution of each photon. This includes the product of
the BRDF and the photon value. The photon value represents the
contribution of the path traced out by the photon, divided by the
probability with which the path was sampled.

We now analyze the variance and expected value of the error
ε(x, r), which we define as the difference between the radiance
estimate at position x and using a kernel kr of scale r, and the true
radiance L(x, ω),

ε(x, r) =
1

M

M∑
j=1

kr(xj − x)γj − L(x, ω). (2)

Variance. We denote the variance of ε(x, r) by Var [ε(x, r)]. To
obtain an estimate for this variance, we make the assumption that
the probability density of the photons is constant within the support
of the kernel kr . Let this density be pl(x). We also interpret the
photon values γj as samples of a random variable γ. This allows us
to include the variance of photon contributions due to different pho-
ton paths and BRDF values on non-diffuse surfaces in our analysis.
We show in Appendix A that, under our assumptions, the variance
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x, ω Surface point and outgoing direction
L Reflected radiance
M Number of emitted photons
xj , γj Position and contribution of photon j
k Canonic kernel for radiance estimation
kr Kernel for radiance estimation with radius r
ε Error of radiance estimation
Var [ε] Variance of error of radiance estimation
E [ε] Expected error of radiance estimation
pl Probability distribution of photons
N Number of progressive photon mapping steps
c, c̄N Exact pixel value, estimate after N steps
xi, ωi Pos. and dir. of eye path hit point in step i
pe Probability distribution of eye path hit points
W Contribution of eye paths
ε̄N Avg. error of radiance estimates after N steps
Var [ε̄N ] Variance of average error of radiance estimates
E [ε̄N ] Expected error of radiance estimates

Table I. : Overview of symbols.

can be approximated as

Var [ε(x, r)] ≈ (Var [γ] + E [γ]2)pl(x)

Mr2

∫
R2

k(ψ)2dψ. (3)

This confirms the intuition that variance decreases linearly with the
number of emitted photons M and the square of the kernel scale.
In addition, the above equation reveals the influence of the shape of
the canonic kernel k on the variance. We can also specify a desired
variance Var [ε], and obtain the corresponding kernel radius

r(x,Var [ε]) ≈

√
(Var [γ] + E [γ]2)pl(x)

MVar [ε]

∫
R2

k(ψ)2dψ. (4)

We will use this relationship later to derive the radii for our pro-
gressive photon mapping approach.

Expected Error. We show in Appendix B that the expected error
of the radiance estimate E [ε(x, r)] is proportional to the squared
radius, i.e.,

E [ε(x, r)] = r2E [γ] τ (5)

for some constant τ . This confirms the intuition that the expected
error, or bias, decreases proportionally to the squared scale of the
kernel. Unfortunately, it is not easy to estimate the factor τ numer-
ically, because it depends on higher order derivatives of the photon
density distribution pl(x). However, this result will still be useful
in our analysis in the next section.

Volumetric Radiance Estimate. Our analysis of variance and
expected error can also be applied to the volumetric radiance es-
timate. This will allow us to easily extend progressive photon map-
ping to participating media, as shown in the next section. The vol-
umetric radiance estimate has the same form as Equation 1, except
that the kernel is three- instead of two-dimensional. Therefore, un-
der the same assumptions as above, it is straightforward to perform
an analogous analysis for the volumetric case. The result of the
analysis is identical to Equations 3 to 5, up to replacing factors r2

by r3 and integration over R2 by integration over R3.

Photon map
Light source with glass fixture

Image plane

Glossy surface

Diffuse surface

Weight W

Pixel 
value c

Radiance
L(x,ω)

x

ω

Fig. 1: This figure illustrates a typical scenario for progressive photon map-
ping. A light fixture enclosed by glass illuminates a scene that contains dif-
fuse and glossy surfaces. We represent pixel values in this situation accord-
ing to Equation 6.

4. PROBLEM FORMULATION

In this section we present a novel, more general derivation of pro-
gressive photon mapping (PPM) and stochastic PPM. We use a prob-
abilistic framework that does not rely on assumptions about a spe-
cific kernel in the photon radiance estimate. It also does not rely
on the maintenance of local statistics. Our goal is to compute pixel
values c of the form

c =

∫
W (x, ω)L(x, ω)dxdω, (6)

as illustrated in Figure 1. The integration is over all scene surfaces
and the hemisphere of directions at each point. Here L(x, ω) is the
distribution of reflected radiance over the scene surfaces. In our
algorithm, we will approximate L using a photon map. In addi-
tion, W is a weighting function that describes the contribution of
L(x, ω) for each surface location x and direction ω to the pixel
value. This weight can include a pixel filter for antialiasing, or it
can include effects such as motion blur, depth of field, and glossy
reflections. In general, we will evaluate W by tracing paths from
the eye.

4.1 Monte Carlo Approximation and Photon Maps

A main issue in conventional photon mapping is that there is a
trade-off between the variance, or noise, and the expected error,
or bias, in the radiance estimate. One can either achieve a low vari-
ance or a low expected error, but not both. The main insight of
progressive photon mapping is that we can obtain a solution with,
in the limit, vanishing variance and expected error by averaging the
results over many photon maps.

To explain how this is possible, we first formulate the evaluation
of Equation 6 as a Monte Carlo estimate. We use a photon map
to obtain an approximation of the true reflected radiance. We write
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the approximation as L(x, ω) + ε, where ε represents the error in-
troduced by the radiance estimation. For brevity, we omit the ar-
guments of the error using the shorthand εi = ε(x, ri). Using this
model, our Monte Carlo estimate is

c̄N =
1

N

N∑
i=1

1

pe(xi, ωi)
W (xi, ωi) (L(xi, ωi) + εi) . (7)

Here, c̄N denotes the estimate for a pixel value using N samples,
i.e., eye paths. The samples (xi, ωi) denote position and direction
of surface intersections of paths generated by ray tracing starting
from the eye, and their probability density is pe(xi, ωi). We denote
the radiance estimation error of the i-th sample by εi.

Now the goal of our algorithm is to obtain an estimate c̄N , such that
its expected value E [c̄N ] converges to the true pixel value c and its
variance Var [c̄N ] approaches zero as the number of samples N
increases. A crucial property of progressive photon mapping is that
each sample is evaluated using a new photon distribution, i.e., a new
photon map. Therefore, we interpret εi as a sample of a random
variable, since the error of the radiance estimate depends on the
random distribution of photons. Let us denote the average error of
the photon map radiance estimate over N samples by

ε̄N =
1

N

N∑
i=1

εi. (8)

We show in Appendix C and D that we can achieve our goal by
making sure that the variance and the expected value of the average
error go to zero simultaneously, i.e.,

as N →∞, Var [ε̄N ]→ 0 ⇒ Var [c̄N ]→ 0
E [ε̄N ]→ 0 ⇒ E [c̄N ]→ c,

(9)

where

Var [ε̄N ] =
1

N2

N∑
i=1

Var [εi] and E [ε̄N ] =
1

N

N∑
i=1

E [εi] . (10)

We next present a strategy that allows us to fulfill these convergence
conditions.

4.2 Achieving Convergence

From the last equation it is clear that the variance of the average
error Var [ε̄N ] goes to zero if the variance of each error Var [εi]
stays constant. However, the expected average error E [ε̄N ] does not
vanish in this case. The main idea of progressive photon mapping
is to let the variance of the radiance estimate increase by a small
factor in each step, but such that in average it still vanishes. In turn,
increasing the variance allows us to reduce the kernel radius, as
shown in Equation 4, and this reduces the expected error, as shown
in Equation 5. Based on this idea we can obtain vanishing variance
and expected value of the average error simultaneously.

Variance of Average Error. Similar as in the original progres-
sive photon mapping formulation [Hachisuka et al. 2008], in each
sample we allow the variance of the error to increase by a factor

Var [εi+1]

Var [εi]
=
i+ 1

i+ α
, (11)

for some constant α with 0 < α < 1. The parameter α controls
how quickly the variance is allowed to increase in each iteration.

We will see below that α effectively determines a trade-off between
vanishing variance and expected value of the average error. Assum-
ing the initial variance of the first sample is Var [ε1], an explicit
formula for the variance of the i-th sample (where i > 1) is

Var [εi] = Var [ε1]

(
i−1∏
k=1

k

k + α

)
i. (12)

We show in Appendix E that, using this sequence, the variance of
the average error Var [ε̄N ] is

Var [ε̄N ] =
Var [ε1]

N2

(
1 +

N∑
i=2

(
i−1∏
k=1

k

k + α

)
i

)
. (13)

In addition, an asymptotic analysis of this equation shows that the
variance vanishes to the order of O(1/Nα), i.e.,

Var [ε̄N ] = O(1/Nα), (14)

where N is the number of samples.

Expected Value of Average Error. Remember from Equation 4
that the variance is inversely proportional to the square radius.
Given the sequence of variances above we therefore obtain a corre-
sponding sequence of kernel radii,

r2
i+1

r2
i

=
Var [εi]

Var [εi+1]
=
i+ α

i+ 1
. (15)

Similar as in Equation 12, given an initial radius r1 we get an ex-
plicit equation for radius ri,

r2
i = r2

1

(
i−1∏
k=1

k + α

k

)
1

i
. (16)

Since the expected error is proportional to the square radius (Equa-
tion 5), the expected error of the i-th sample (where i > 1) is

E [εi] = E [ε1]

(
i−1∏
k=1

k + α

k

)
1

i
, (17)

and the expected value of the average error is

E [ε̄N ] =
E [ε1]

N

(
1 +

N∑
i=2

(
i−1∏
k=1

k + α

k

)
1

i

)
. (18)

We show in Appendix F that this vanishes to the order of
O(1/N1−α), i.e.,

E [ε̄N ] = O(1/N1−α). (19)

In Figure 2a we visually summarize the behavior of the variance
of the error in each iteration (Equation 12) and the variance of the
average error (Equation 13). The figure shows how the variance in
each iteration is allowed to increase, while the variance of the av-
erage still decreases. Similarly, in Figure 2b we plot the expected
error in each iteration (Equation 17) and the expected value of the
average error (Equation 18). In summary, the variance and the ex-
pected value of the average error vanish as desired if 0 < α < 1,
where α controls the relative rate of decrease.

We also prove in Appendix G that the radius reduction scheme pro-
posed by Hachisuka et al. [2008] leads to the same sequence of radii
as given by Equation 15, assuming that the local photon density is
constant. This may be surprising, because their approach relies on
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(b) Expected error E[εi] (dotted), and
expected value of its average E[εi]
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Fig. 2: This figure summarizes (a) the behavior of the variance of each iter-
ation Var [εi] and the variance of the average Var [ε̄i]. Note that Var [ε̄i]

denotes the variance of the average over the first i iterations. Figure (b)
shows the expected error of each iteration E [εi] and the expected value of
the average error E [ε̄i] (again over the first i iterations). We plot the rel-
ative change compared to an initial variance Var [ε1] and expected error
E [ε1].

gathering local statistics and reducing the radius based on the col-
lected data. Our proof shows that the rate at which the radii are
reduced is independent of the local photon density and gathering
statistics is unnecessary.

Volumetric Progressive Photon Mapping. One of the main ad-
vantages of our derivation is that its extension to volumetric pro-
gressive photon mapping is trivial. Our model for computing pixel
values from Equation 6 is equally valid for rendering participating
media. In this case, radiance L is defined in a volume instead of
on surfaces, and we approximate it using a volumetric photon map.
In addition, the weighting function W includes attenuation along
eye rays. Finally, the integration is over three spatial dimensions,
instead of over surfaces.

We can use the same scheme as in Equation 12 to obtain a vanishing
variance of the average error. This leads to a sequence of radii

r3
i+1

r3
i

=
Var [εi]

Var [εi+1]
=
i+ α

i+ 1
(20)

analogous to Equation 15. Our asymptotic analysis from the ap-
pendix immediately applies to the volumetric case as well. As a
result, we obtain the same convergence order of O(1/Nα) for the
variance of the average error Var [ε̄N ] and O(1/N1−α) for the ex-
pected average error E [ε̄N ].

4.3 Algorithm

In this section we outline a practical algorithm based on the theory
presented so far. Our algorithm simply runs a conventional photon
mapping scheme with no or very small modifications in an iterative
fashion. The algorithm exhibits the same convergence behavior as
the original progressive photon mapping approach, even though it
does not maintain any local statistics. In addition, it has the ad-
vantages that it works with arbitrary kernels, it includes volumetric
photon mapping, and we can approximately predict the output pixel
variance after N iterations using our asymptotic analysis.

A high level summary of our algorithm is provided in Figure 3. The
main input parameters to this procedure are the desired render time,

1 i← 0

2 while time is not up
3 do
4 generate photon map
5 for all pixels
6 do
7 trace path from eye until diffuse surface is hit
8 hit position and direction are (xi, ωi)

9 path contribution is W (xi, ωi)

10 path probability density is pe(xi, ωi)
11 get current radius ri from reference r1 and Eq. 15
12 obtain radiance estimate L(xi, ωi) + εi
13 update pixel value, Eq. 7
14 i← i+ 1

Fig. 3: Pseudocode for our version of progressive photon mapping. There
is no need to store local statistics. The iterations of the main loop are inde-
pendent and can be performed in parallel.

the parameter α to determine the trade-off between vanishing vari-
ance and expected error, and the specification of a reference radius.
The reference radius indicates the initial radius that is used for ra-
diance estimation in the first iteration. Each iteration of the outer
loop essentially performs a standard photon mapping procedure.
The crucial step in our algorithm is line 11, where we compute the
current radius for radiance estimation by reducing the reference by
the appropriate factor from Equation 15. We discuss several possi-
bilities to specify the reference radius below. Note that the iterations
of the main loop are independent of each other and can be executed
in parallel if desired. This is not possible using previous progres-
sive photon mapping approaches, because the local statistics need
to be carried over from each iteration to the next.

We have experimented with three different ways to specify the ref-
erence radii, similar as proposed by Hachisuka [2008]. The sim-
plest option is to use a global reference radius r1 for the whole
scene. In this case, for each iteration the global radius is directly
given by Equation 15. The advantage of this approach is that we
can move line 11 in our algorithm to the outer loop, and there is
no need to compute a local reference radius for each eye path. We
can now execute the inner loop with a standard photon mapping
algorithm, used as a black box, where we only need to be able to
specify the appropriate radius for radiance estimation.

Alternatively, a local reference radius r1(x) can be computed per
eye ray by back-projecting the pixel footprint. Here, x denotes the
hit point of the eye path. Ray differentials can be used to include re-
flections and refractions. The advantage of this approach is that the
blur introduced by radiance estimation can be kept approximately
constant across the image with respect to pixel size. As a disadvan-
tage, we need to perform the back projection calculations for each
eye path.

The third option is to define the local reference radius r1(x) as the
distance to the k-nearest neighbor in the photon map from location
x, where radiance estimation is performed. Since we do not want
to store any data, we recompute this reference radius for each ra-
diance estimation. Again, we obtain the reduced radius for the cur-
rent iteration using Equation 15. The disadvantage of this approach
is that we always need to collect k photons in each iteration, while
the reduced radius may only use a fraction of these photons for the
actual radiance estimate. This computational overhead may lead to
increased render times.
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Fig. 4: Vanishing behavior of variance and expected error for pixels B and
C in Figure 5. The plots in the top row show the variance Var [ε̄N ] and
the plots in the bottom row show the expected average error E [ε̄N ] as a
function of the number of iterations N . We plot the empirically estimated
variance and expected average error (solid lines) and the asymptotic be-
havior of the varianceO(1/Nα) and expected average errorO(1/N1−α)
(dotted lines). We show results for α = 0.3 and α = 0.7, using 100’000
photons in each iteration step. The reference radius is determined as the
kNN distance in the photon maps with k = 100.

Note that when using local reference radii, the reference radius for
a given pixel may vary from step to step during the iteration. For
example, the back projection of the pixel footprint along an eye
path may vary because the eye path may not be exactly the same
in each iteration. To see that the variance and expected value of the
average error for the pixel still converge to zero (Equation 9), we
can assume that the reference radii for a pixel are bounded by some
maximum and minimum value1. Observe that the method would
still converge if we always were to use the maximum (or always
the minimum) reference radius in each iteration. Therefore, we also
get convergence if we use any reference radius between minimum
and maximum in each iteration: the variance will be smaller than
if we always were to use the minimum reference, and the expected
error will be smaller than if we always were to use the maximum
reference.

5. RESULTS AND COMPARISONS

We first provide empirical measurements to support our analysis
from the previous section. In Figure 4 we illustrate the vanishing
behavior of variance Var [ε̄N ] and expected error E [ε̄N ] at pixels
B and C in Figure 5. The top plots show the variance Var [ε̄N ] as
a function of the number of iterations N . To measure the variance
empirically, we computed the result image four hundred times for
each N , with different seeds for the photon maps each time. The

1To handle pathological cases, the reference radii may need to be clamped
to a user specified minimum and maximum. This may be necessary, for
example, if ray differentials lead to a zero-area footprint, or if the distance
to the k-nearest neighbor gets very large in completely dark areas.

Fig. 5: This figure shows three characteristic points sampled for the statis-
tics in Figure 4 and 6. Point A lies in a homogenous region, points B and C
lie just outside and just inside the caustic.

measured variance is the sample variance of pixels B and C over
these four hundred images. Note that we perform radiance estima-
tion at the surface intersection at pixels B and C, without any further
stochastic ray tracing steps. Therefore, the pixel variance is equiv-
alent to the variance of radiance estimation. We compare the mea-
surements to the asymptotic estimate O(1/Nα). The plots show
that the asymptotic approximation well predicts the measured vari-
ance. The plots at the bottom visualize the convergence of the ex-
pected average error E [ε̄N ]. We empirically measure the expected
average error by computing four hundred images for each N , sim-
ilarly as for the variance measurement. For each N we estimate
the error as the difference between the sample mean over the four
hundred images and a reference image. The plots show that the
measurements follow the asymptotic approximation O(1/N1−α),
but only for larger N . This is not surprising considering that our
analysis of the expected average error (Appendix B) is based on
a second-order Taylor series expansion. The error here, however,
is due to a sharp step edge that includes higher order terms. The
plots indicate that for smallerN (larger radii) the higher order terms
dominate the error.

In Figure 6 we compare our method with the original PPM algo-
rithm. The plots show measurements at three characteristic points
A, B, and C in Figure 5. We performed radiance estimates using a
box filter and starting from a uniform global radius. We ran 200 it-
erations using 500’000 photons per iteration for two different alpha
values α = 0.3 and α = 0.7. We show the squared radius r2

i in
each iteration in the top row, and the pixel value c̄i after i iterations
in the bottom row.

Point A lies in a homogeneous region. There is practically no dif-
ference between the two methods, which is to be expected consid-
ering the proof in Appendix G that, for homogeneous regions, both
schemes lead to the same radius reduction. Point B lies outside a

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Progressive Photon Mapping: A Probabilistic Approach • 7

 1

 10

 100

 1000

 20  40  60  80  100 120 140 160 180 200

S
q
u
ar

ed
 R

ad
iu

s 
r
i2

Iteration i

Point A
homogenous

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100 120 140 160 180 200

P
ix

el
 V

al
u
e 
c
i

Iteration i

Ours α = 0.3
PPM α = 0.3
Ours α = 0.7
PPM α = 0.7

 1

 10

 100

 1000

 20  40  60  80  100 120 140 160 180 200

S
q
u
ar

ed
 R

ad
iu

s 
r
i2

Iteration i

Point B
outside caustic

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100 120 140 160 180 200

P
ix

el
 V

al
u
e 
c
i

Iteration i

 1

 10

 100

 1000

 20  40  60  80  100 120 140 160 180 200

S
q
u
ar

ed
 R

ad
iu

s 
r
i2

Iteration i

Point C
inside caustic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 20  40  60  80  100 120 140 160 180 200

P
ix

el
 V

al
u
e 
c
i

Iteration i

Fig. 6: We compare our method to the original PPM approach with respect to the rate of radius reduction and its effect on the resulting pixel
value. The plots show measurements at three characteristic points A, B, and C in Figure 5. The top row shows the squared radius r2

i in each
iteration, and the bottom row shows the pixel value after i iterations. Both methods shrink the radius equivalently in homogeneous regions
(Point A), but the original PPM is affected by locally inhomogeneous photon densities. It shrinks the radius slower if the density is decreasing
over the iterations (Point B), and faster if it is increasing (Point C).

caustic boundary, but the initial global radius covers parts of the
caustic. For α = 0.3, after about ten iterations, the radii become
smaller than the distance to the caustic and the radiance begins to
converge towards the correct value. For α = 0.7, the radius reduces
too slowly to leave the caustic, resulting in positive bias of the ra-
diance even after 200 iterations. In the radius plots we observe that
the original PPM shrinks the radius more slowly. This is because as
the radius is reduced, a larger fraction of the box kernel lies outside
the caustic and the local photon density under the kernel decreases.
Point C is similar to Point B, but this time the point is inside the
caustic, with the initial global radius covering the dark region. Af-
ter a few iterations, the circle radius for α = 0.3 is entirely inside
the caustic, converging towards the true value. For α = 0.7, the
radius remains too big, resulting in negative bias even after 200 it-
erations. Here the original PPM reduces the radius faster due to the
increasing photon density. In summary, our experiment confirms
that the two methods are equivalent for locally homogeneous re-
gions, but they lead to slightly different behavior if the photon den-
sity within the radiance estimation kernel is inhomogeneous. After
a sufficiently large number of iterations, however, the kernels will
become small enough to cover locally homogeneous areas, and we
expect the same convergence to the correct, unbiased result.

Figure 7 compares rendering results of stochastic PPM and our
method. We set an identical initial global reference radius to ob-
tain a fair comparison. Our implementation uses Equation 15 to
update the global radius in each step, while stochastic PPM main-
tains local statistics to update the radiance estimates. We evaluated

100 iterations with two million photons each. The visual results are
practically identical and the difference is only in the noise.

In Figure 8 we demonstrate that with our approach we can use other
kernels than a box kernel for radiance estimates. Here we used a
Gaussian kernel and compare the rendering results to a box kernel.
We use the exact same photon maps in both cases. The Gaussian
kernel leads to slightly smoother results with similar bias.

As a proof of concept, we demonstrate progressive radiance esti-
mation on the glossy floor surface in Figure 9. According to Equa-
tion 3 the variance of radiance estimation is proportional to the vari-
ance of the photon contributions, which is very large because of the
glossy BRDF. Nonetheless the variance converges, although we ob-
tain an acceptable result only after an impractical number of many
billion photons.

Figure 10 and Figure 11 show scenes with depth of field and
glossy surfaces. This demonstrates that our approach is applica-
ble to stochastic path tracing from the eye without any modifica-
tions. In other words, our approach includes the stochastic PPM
scenario [Hachisuka and Jensen 2009].

Figure 12 demonstrates the application of our approach to volumet-
ric photon mapping. We trace two million photons per iteration.
We perform several hundred iterations and trace more than a bil-
lion photons in total to obtain an image with little noise and sharp
caustics.

We compare the performance of stochastic PPM with our algorithm
in Table II. For three different scenes, we measured photon trac-
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Stochastic PPM Our Method Difference 20×

Fig. 7: Torus scene for image quality comparison between stochastic PPM and our method. We fixed the initial radius globally such that both
methods have the same initial condition. The difference in the resulting images is essentially noise.

Fig. 8: We compare rendering results using a box kernel (top row)
and a Gaussian kernel (bottom row). From left to right, the images
were rendered using 1, 100, and 10’000 iterations. We used only
10’000 photons per iteration to emphasize the difference between
the kernels. The standard deviation of the Gaussian kernel is equal
to the radius of the box kernel.

Fig. 9: We show the rendering progress using radiance estimates
on a glossy surface. The images were rendered using 1, 10, 100,
1000, 10’000, and 100’000 iterations, with 1 million photons per
iteration. The last image was rendered using 100 billion photons.

ing time and eye ray tracing time including radiance estimates. The
images were rendered at a resolution of 768 × 768 pixels using a
single thread on a 2.67GHz Intel Xeon Processor using 2 million
photons per iteration for 20 iterations with α = 0.7. We tried three
different strategies to initialize the reference radius, using a global
reference radius, kNN-estimated radius (k = 200), and ray differ-
entials. For the last two strategies, we estimate the radii in every
iteration, while stochastic PPM needs to estimate the radii for the
first iteration only. The cost in estimating the initial radius holds
balance with the cost in maintaining local statistics such that the
differences can be ignored.

As elaborated in section 4.3, one result of our analysis is that we
can treat a conventional direct visualization photon mapper as a
black box and extend it to PPM using a script, for example using
pseudo code as in Figure 13. To implement PPM with global refer-
ence radius, we only require from the photon mapper the ability to
specify the global radius to perform range queries and a seed value
to generate randomized photon distributions. As a proof of con-
cept we wrote a script for PBRT to render a series of images with

different radii, using Equation 15. The only change to PBRT itself
was the randomization of a seed value to generate different photon
distributions for every iteration. The resulting images from the iter-
ations are then simply averaged (Figure 14). We run the script on a
heterogeneous cluster with 166 nodes and various CPUs, resulting
in a rendering time of 40 minutes instead of three hours on a sin-
gle CPU with 8 cores. Clearly, our approach does not consume any
additional memory, and it allows for parallelization using a conven-
tional photon mapper used as a black box.

6. CONCLUSIONS

We have presented a novel formulation of progressive photon map-
ping based on a probabilistic perspective. Our analysis provides a
conceptually simple, yet general understanding of progressive pho-
ton mapping. Using our analysis we developed a simple, memory-
less algorithm that does not require the maintenance of local statis-
tics, as is necessary in previous techniques. As a consequence, the
photon mapping iterations in our algorithm are independent and
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Fig. 10: The diamonds are rendered using 10 billion photons with
dispersion and depth of field.

Fig. 11: The clocks are rendered using 200 million photons on a
glossy surface and with depth of field.

1 iteration
2 million photons

10 iterations
20 million photons

100 iterations
200 million photons

1000 iterations
2 billion photons

Fig. 12: We demonstrate our approach with volumetric photon mapping. We trace two million photons per iteration. We obtain a result with
little noise and sharp caustics after several hundred iterations and tracing more than a billion photons in total.

1 r ← r1
2 for i = 1 : N

3 do
4 seed← random()

5 images(i)← pmdirect(r, seed)

6 r ← r
√

(i+ α)/(i+ 1)

7 result← average(images,N)

Fig. 13: Pseudo code for a script to extend a direct visualization photon
mapper to PPM using a global reference radius. r is the global radius, ini-
tialized with the global reference radius r1.

can be run in parallel. We also obtained an asymptotic analysis that
shows the trade-off between vanishing variance and expected error.
In addition, our derivation holds for arbitrary radiance estimation
kernels. Finally, we demonstrated a straightforward extension to
participating media and volumetric photon mapping.

One direction of future investigation would be to use radiance esti-
mates using nearest neighbor queries instead of range queries. In-
stead of progressively reducing the radii of the range query, we
could progressively reduce the number of photons in the near-
est neighbor query. Another direction would be to investigate lo-
cally varying alpha values to adaptively decrease bias in corners
and boundaries. Finally, our analysis assumes that photons are dis-
tributed identically and independently. To make our approach appli-
cable to Markov Chain Monte Carlo or adaptive importance sam-
pling, it would be interesting to investigate how this assumption
could be removed. We believe that it will be straightforward to ap-
ply our analysis to other radiance estimates beyond the usual sur-
face and volumetric estimates, such as the beam radiance estimate.
Our approach could also be useful for efficient GPU implementa-
tions because of its simplicity, and because it can be run in parallel
and does not require the storage of local statistics.
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Rendering time in seconds

Reference radius Our method Stochastic PPM

γ Eye Total γ Eye Total
Cornell Box

Global radius 179 281 459 179 288 467
k-nearest neighbour 180 268 447 180 258 437
Ray differentials 179 738 917 180 869 1048

Box
Global radius 1018 132 1150 986 133 1118
k-nearest neighbour 984 117 1101 985 118 1103
Ray differentials 988 222 1210 977 238 1214

Torus
Global radius 208 145 352 209 144 352
k-nearest neighbour 208 145 353 208 145 353
Ray differentials 207 244 450 208 260 467

Table II. : Performance comparison between our method and our imple-
mentation of stochastic PPM. We report timings for the photon tracing pass
(γ), the eye tracing pass including radiance estimation, and the total time.
The rendering times of both methods are nearly identical.
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APPENDIX

A. VARIANCE OF RADIANCE ESTIMATE

The error of the radiance estimate using a kernel kr of radius r is
represented by

ε(x, r) =
1

M

M∑
j=1

kr(xj − x)γj − L(x, ω).

Note that the dependency of the radiance estimate on the outgo-
ing direction ω is hidden in the photon values γj , which include
multiplication with the BRDF.

We now analyze the variance Var [ε(x, r)] of the error of the radi-
ance estimate ε(x, r). We interpret photon positions xj as indepen-
dent, identically distributed (i.i.d) samples of a random variable X
with a certain probability density pl(x). Likewise, we treat the pho-
ton contributions γj as samples of a random variable γ with some
probability distribution. We have

Var [ε(x, r)] = Var

[
1

M

M∑
j=1

kr(X − x)γ − L(x, ω)

]

=
1

M
Var [kr(X − x)] (Var [γ] + E [γ]2)

+
1

M
Var [γ] E [kr(X − x)]2 ,

where we assumed that the random variables X and γ are indepen-
dent.

Let us assume that the kernel kr is compactly supported in an
area Ω and that the probability density of the photons is constant
over Ω. We call this density pl(x). We note that the expected
value E [kr(X − x)] is pl(x). We also express the kernel kr in
terms of a canonic kernel k with unit scale and unit integral, i.e.,
kr(ξ) = 1/r2k(ξ/r) and obtain∫

Ω

kr(ξ − x)2dξ =
1

r2

∫
R2

k(ψ)2dψ,

where we used a variable substitution ψ = (ξ − x)/r, dξ = r2dψ.
The factor r2 appears because this is a two-dimensional integral.
The variance Var [kr(X − x)] can now be written as

Var [kr(X − x)] =
pl(x)

r2

∫
R2

k(ψ)2dψ − p2
l (x).

Substituting this into the earlier expression for the variance of the
error of the radiance estimate, Var [ε(x, r)], we obtain

Var [ε(x, r)]

=
1

M

(
pl(x)

r2

∫
R2

k(ψ)2dψ − p2
l (x)

)
(Var [γ] + E [γ]2)

+
1

M
Var [γ] p2

l (x)

≈ (Var [γ] + E [γ]2)
pl(x)

Mr2

∫
R2

k(ψ)2dψ.

In the last step we make the assumption that the kernel covers only
a small part of the whole scene, hence

∫
R2 k(ψ)2dψ � p2

l (x).

B. EXPECTED ERROR OF RADIANCE ESTIMATE

The expected error of the radiance estimate is defined as

E [ε(x, r)] = E

[
1

M

M∑
j=1

kr(X − x)γ − L(x, ω)

]
= E [γ] E [kr(X − x)]− L(x, ω).

Again, the photon positions are interpreted as i.i.d. samples of a
random variable X with a certain density pl(x) and the photon
contributions are interpreted as samples of a random variable γ.
The expected value E [kr(X − x)] is defined as the integral

E [kr(X − x)] =
1

r2

∫
R2

k((ξ − x)/r)pl(ξ)dξ.

To obtain an estimate of this, we use a Taylor expansion of the
photon density pl(ξ) around x,

pl(ξ) = pl(x) + (ξ − x)∇pl(x) +O(‖ξ − x‖2),

and substitute it into the integral. Similar approaches are used to
analyse the properties of density estimation in statistics [Silver-
man 1986]. In addition, we make a change of integration variables
ψ = (ξ − x)/r, dξ = r2dψ. The factor here is r2 because the
kernel is two-dimensional. Note that O(‖ξ − x‖2) = r2O(‖ψ‖2).
Exploiting the fact that k has unit integral and, in most practical
cases, a vanishing first moment, i.e.,

∫
R2
ψk(ψ)dψ = 0, we obtain

E [kr(X − x)] = pl(x) + r2

∫
R2

k(ψ)O(‖ψ2‖)dψ.
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We note that the expected value of a radiance estimate with in-
finitely small kernel corresponds to the exact radiance, hence we
can express L(x, ω) as

L(x, ω) = E [γ] E [δ(X − x)] = E [γ] pl(x),

where δ is the Dirac delta function. Finally, this means

E [ε(x, r)] = E [γ] E [kr(X − x)]− L(x, ω)

= r2E [γ]

∫
R2

k(ψ)O(‖ψ2‖)dψ

= r2E [γ] τ,

for some constant τ . Unfortunately it is difficult in practice to esti-
mate the τ because it depends on the higher order derivatives of the
photon density distribution pl(x).

C. VARIANCE OF THE PIXEL ESTIMATE

Here we derive the variance of the pixel estimate c̄N afterN photon
mapping steps. We show that, as the number N of samples goes to
infinity, the variance of c̄N vanishes, if the variance of the average
error Var [ēN ] of the radiance estimates vanishes. Here the samples
(xi, ωi) are hit positions of eye paths, not photons. But similar as
before, the samples are i.i.d. with a single density pe(x, ω). Hence,
they are represented by a single random variable when computing
variance or expected value. To simplify notation even further, we
omit this random variable as argument of the functions L, W , and
pe. We have

Var [c̄N ] = Var

[
1

N

N∑
i=1

W

pe
(L+ εi)

]

=
1

N2

N∑
i=1

Var

[
W

pe
L

]
+

1

N2

N∑
i=1

Var

[
W

pe
εi

]

=
1

N
Var

[
W

pe
L

]
+

1

N2

N∑
i=1

Var

[
W

pe
εi

]
.

Note that the errors of the radiance estimate in each step εi are
random variables that are not identically distributed in progressive
photon mapping. The first sum in the last line is the usual variance
of the Monte Carlo estimate, which converges to zero with 1/N .
Assuming the random variables W/pe and εi are independent, we
rewrite the second sum as

1

N2

N∑
i=1

Var

[
W

pe
εi

]
= Var

[
W

pe

]
1

N2

N∑
i=1

Var [εi]

+ E

[
W

pe

]2
1

N2

N∑
i=1

Var [εi] + Var

[
W

pe

]
1

N2

N∑
i=1

E [εi]
2 .

Here, the last sum vanishes with N → ∞ because E [εi] ≤ E [ε1],
which follows from Equation 17. The other parts vanish if

1

N2

N∑
i=1

Var [εi] = Var [ε̄N ] ,

vanishes, as we claimed in the beginning.

D. EXPECTED VALUE OF THE PIXEL ESTIMATE

Here we derive the expected value of the pixel estimate c̄N . We
show that as the number of samplesN goes to infinity, the expected
value of c̄N converges to the exact value c, if the expected value of
the average error E [ε̄N ] of the radiance estimates vanishes. The
expected value of the pixel estimate is

E [c̄N ] = E

[
1

N

N∑
i=1

1

pe
W (L+ εi)

]

=
1

N

N∑
i=1

E

[
1

pe
WL

]
+

1

N

N∑
i=1

E

[
1

pe
W

]
E [εi]

= c+ E

[
1

pe
W

]
1

N

N∑
i=1

E [εi]

= c+ E

[
1

pe
W

]
E [ε̄N ]

where we used the fact that the expected value of the Monte Carlo
estimate corresponds to the exact pixel value c. We conclude that
if the expected value of the average error E [ε̄N ] vanishes, then the
expected pixel value is the exact value, E [c̄N ] = c.

E. VARIANCE OF THE AVERAGE ERROR

The variance of the average error over the PPM iterations is

Var [ε̄N ] = Var

[
1

N

N∑
i=1

εi

]
=

1

N2

N∑
i=1

Var [εi] .

Now we show that Var [ε̄N ] converges even if we increase the vari-
ance Var [εi] in each step. We allow the variance to increase by a
factor

Var [εi+1] =
i+ 1

i+ α
Var [εi]

in each step. Starting with a variance Var [ε1], an equivalent explicit
formula for i > 1 is

Var [εi] = Var [ε1]

(
i−1∏
k=1

k

k + α

)
i.

Therefore, the variance of the average error is

Var [ε̄N ] =
Var [ε1]

N2

(
1 +

N∑
i=2

(
i−1∏
k=1

k

k + α

)
i

)
.

To analyze this equation asymptotically, we note that for large i we
can approximate the product formula as(

i−1∏
k=1

k

k + α

)
i =

iαΓ(α)Γ(i)

Γ(α+ i)

= iαB(α, i)

= Θ(i1−α),

where we use the Gamma and Beta functions Γ and B, respec-
tively, and Θ is asymptotic notation. The asymptotic approxima-
tion is based on Stirling’s formula [Abramowitz and Stegun 1964].
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Finally we get

Var [ε̄N ] =
Var [ε1]

N2

(
1 +

N∑
i=2

(
i−1∏
k=1

k

k + α

)
i

)

=
Var [ε1]

N2

(
1 +

N∑
i=2

Θ(i1−α)

)

=
Var [ε1]

N2

(
1 +NO(N1−α)

)
= O(1/Nα).

This confirms the intuition that for α = 1, convergence is propor-
tional to 1/N . In addition, it shows that there is no convergence for
α = 0.

F. EXPECTED AVERAGE ERROR

Recall the expected average error over the PPM iterations from
Equation 18,

E [ε̄N ] =
E [ε1]

N

(
1 +

N∑
i=2

(
i−1∏
k=1

k + α

k

)
1

i

)

=
E [ε1]

N

(
1 +

N∑
i=2

1

B(α, i)αi

)

=
E [ε1]

N

N∑
i=1

1

B(α, i)αi

We show in Appendix H that this series of Beta functions can be
expressed in closed form, and it follows that

N∑
k=1

1

B(α, k)k
=

1

B(α,N)α
+

1

B(α,N)N
− 1.

Substituting this expression in the above equation yields

E [ε̄N ] =
E [ε1]

N

1

α

(
1

B(α, i)α
+

1

B(α,N)N
− 1

)
=

E [ε1]

N

(
α+N

B(α,N)α2N
− 1

α

)
=

E [ε1]

N

(
Θ(Nα−1)

α+N

α
− 1

α

)
= O(Nα−1).

G. EQUIVALENCE WITH ORIGINAL PPM

We prove that the radius reduction scheme by Hachisuka et
al. [2008] is the same as our approach in Equation 15. The local
radius reduction factor proposed by Hachisuka et al. is given in
Equation 9 of their paper,

r2
i+1

r2
i

=
Ni + αMi

Ni +Mi

,

where Mi is the number of photons collected in the current itera-
tion, and Ni is an accumulated statistics (note that we abuse nota-
tion here to be consistent with the Hachisuka et al.; in the rest of our

paper N is the number of iterations). We derive an explicit formula
for Ni from Equation 7 in Hachisuka et al.,

Ni = Ni−1 + αMi−1 = N1 + α

i−1∑
k=1

Mk,

and substitute it above to obtain

r2
i+1

r2
i

=
N1 + α

∑i−1
k=1Mk + αMi

N1 + α
∑i−1
k=1Mk +Mi

.

In the first iteration the number of photons found within r1 is N1.
For the next iteration, prior to radius reduction, we findM1 photons
using the same radius r1. Therefore N1 = M1 and we get

r2
i+1

r2
i

=
M1 + α

∑i−1
k=1Mk + αMi

M1 + α
∑i−1
k=1Mk +Mi

.

Assuming the photon density d = Mi/(πr
2
i ) is locally constant,

we substitute Mi = dπr2
i and obtain a recursive formula for r2

i ,

r2
i+1

r2
i

=
r2
1 + α

∑i−1
k=1 r

2
k + αr2

i

r2
1 + α

∑i−1
k=1 r

2
k + r2

i

.

To guess an explicit expression for the sequence of radii, we de-
velop the first three iteration steps:

r2
2 = r2

1

α+ 1

2

r2
3 = r2

1

(α+ 1)(α+ 2)

6

r2
4 = r2

1

(α+ 1)(α+ 2)(α+ 3)

24
.

We write the above using a product formula and observe that we
obtain a Pochhammer polynomial. This allows us to express our
formula using the Euler Gamma and Beta functions,

r2
i = r2

1

∏i−1
k=1(α+ k)

i!
= r2

1

Γ(α+ i)

Γ(α+ 1)Γ(i+ 1)
=

r2
1

B(α, i)αi
.

In addition, our guess leads to a simple recursive formula for the
sequence of radii,

r2
i+1

r2
i

=
i+ α

i+ 1
.

We now prove our guess using induction. It is obvious that it holds
for the anchor. Next we show it also holds for the induction step
r2
i → r2

i+1. We restate our claim,

r2
i+1

r2
i

=
r2
1 + α

∑i−1
k=1 r

2
k + αr2

i

r2
1 + α

∑i−1
k=1 r

2
k + r2

i

=
i+ α

i+ 1
,

and multiply out the second identity to obtain

r2
i =

r2
1 + α

∑i−1
k=1 r

2
k

i
.

We replace r2
i and r2

k by the explicit formula, i.e., our induction
hypothesis, and get a recursive definition of the Beta function,

r2
1

B(α, i)αi
=

1

i

(
r2
1 + α

i−1∑
k=1

r2
1

B(α, k)αk

)
,
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Image 1, r = 20.0 Image 10, r = 11.87 Image 100, r = 6.71 Image 1000, r = 3.78

Image 1 Averaged images 1–10 Averaged images 1–100 Averaged images 1–1000

Fig. 14: Our formulation of PPM can be used to extend a conventional direct visualization photon mapper to PPM using a simple script
(Figure 13). We rendered the box scene using PBRT on a cluster. The script submitted 1000 independent render jobs with radii obtained from
the radius sequence defined by Equation 15 using α = 0.5. Every image was rendered using three million stored photons. The top row shows
the rendered images for iteration number 1, 10, 100, and 1000. The bottom row shows the averaged results over the corresponding sequence.

which is equivalent to

1

B(α, i)α
= 1 +

i−1∑
k=1

1

B(α, k)k
.

We prove this identity in Appendix H.

H. RECURSIVE FORMULA OF BETA FUNCTION

We use induction to prove the identity

1

B(α, i)α
= 1 +

i−1∑
k=1

1

B(α, k)k
.

Splitting up the sum and substituting the induction hypothesis, we
get

1

B(α, i+ 1)α
= 1 +

i−1∑
k=1

1

B(α, k)k
+

1

B(α, i)i

=
1

B(α, i)α
+

1

B(α, i)i
,

which is equivalent to a well known functional equation for the
Beta function,

B(α, i+ 1) = B(α, i)
i

i+ α
.
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