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Learning 3D global features from multiple views is an effec-
tive approach for 3D shape understanding. A widely adopte
strategy is to leverage deep neural networks to aggregate f
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Abstract

Deep learning has achieved remarkable results in
3D shape analysis by learning global shape features
from the pixel-level over multiple views. Previ-
ous methods, however, compute low-level features
for entire views without considering part-level in-
formation. In contrast, we propose a deep neural
network, calledParts4Feature, to learn 3D glob-

al features from part-level information in multiple
views. We introduce a novel definition of gener-
ally semantic parts, which Parts4Feature learns to
detect in multiple views from different 3D shape
segmentation benchmarks. A key idea of our ar-
chitecture is that it transfers the ability to detec-

t semantically meaningful parts in multiple views
to learn 3D global features. Parts4Feature achieves
this by combining a local part detection branch and
a global feature learning branch with a shared re-
gion proposal module. The global feature learn-
ing branch aggregates the detected parts in terms of
learned part patterns with a novel multi-attention
mechanism, while the region proposal module en-
ables locally and globally discriminative informa-
tion to be promoted by each other. We demonstrate
that Parts4Feature outperforms the state-of-the-art
under three large-scale 3D shape benchmarks.

Introduction

tures hierarchically extracted from pixel-level inforricet in - S
each view. However, current approaches can not employ parfYork derived from Fast R-CNNGirshick, 2015 to learn to
level information. In this paper, we show for the first time detéct and localize GSPs in multiple views. In addition, the

how extracting part-level information over multiple vieean ; . .
be leveraged to learn 3D global features. We demonstratgetected parts in terms of learned part patterns with multi-

that this approach further increases the discriminatufi
global fea?tﬁ)res and outperforms the state-of-the-art z[?tsth further increase the discriminability of learned featurgsot

on large scale 3D shape benchmarks.

parts could help classify shapes more accurately. Previo%O
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studies on fine-grained image recognition also employ this
intuition by combining local part detection and global feat
learning together. To learn highly discriminative featite
distinguish subordinate categories, these methods trysto fi
detect important parts, such as heads, wings and tailsaf bir
s, and then collect these part features into a global feature
However, these methods do not tackle the challenges that we
are facing in the 3D domain. First, these methods require
ground truth parts with specified semantic labels, while 3D
shape classification benchmarks do not provide such kind of
labels. Second, the part detection knowledge learned Isg the
methods cannot be transferred for general purpose use, such
as non-fine-grained image classification, since it is sygetifi
for particular shape classes. Third, these methods aresnot d
signed to aggregate part information from multiple images,
corresponding to multiple views of a 3D shape in our scenari-
0. Therefore, simultaneously learning part detection amd f
ther aggregating part-level information from multiple wie
become a unique challenge in 3D global feature learning.

To address these issues, we propemesdFeature, a deep
neural network to learn 3D global features from semantic
parts in multiple views. With a novel definition of generally
semantic parts (GSPs), Parts4Feature learns to detectiGSPs
multiple views from different 3D shape segmentation bench-
marks. Moreover, it learns a 3D global feature from shape
classification data sets, by transferring the learned kedgée
of part detection, and leveraging the detected GSPs in mul-
tiple views. Specifically, Parts4Feature is mainly compose
of a local part detection branch and a global feature legrnin
branch. Both branches share a region proposal module, which

gnables locally and globally discriminative informatiomtet

romoted by each other.
The local part detection branch employs a novel neural net-

global feature learning branch incrementally aggregdtes t
attention. We propose a novel multi-attention mechanism to

only highlighting the distinctive parts and part patterosdd-

It is intuitive that learning to detect and localize semanti SC depressing the ambiguous ones. Our novel view aggrega-

ion based on semantic parts prevents information losechus
y the widely used pooling, and it can understand each detect
ed part in a more detailed manner. In summary, our contribu-



tions are as follows: whereR is shared by. andG and receives multiple views of

i) We propose Parts4Feature, a novel deep neural network 3D shape as input. We train Parts4Feature simultaneously
to learn 3D global features from semantic parts in mul_undera local part detection benchmérland a global feature

. . P ; _learning benchmark?. The local part detection brandh
Efrlg ?ggﬁ?agﬁ;g{;gpmg part detection and global fea learns to identify GSPs in multiple views und&t while G

- ' _ learns a global feature from the detected GSPs in multiple
i) We show that the novel structure of Parts4Feature is cayiews undenb.

pable of learning and transferring universal knowledge Fq, 4 3D shapen in either® or ¥, we capturel/ views

of part detection, which allows Parts4Feature to lever-i 5.ound it, forming a view sequenee= {v|i € [1, V]}.

age discriminative information from another source (3D st the region proposal modukeprovides the featureg
shape segmentation) for 3D global feature learning. . p . S ) J
of regionsr’ proposed in each view', wherej € [1,.J].

iii) Our global feature learning branch introduces a novel-l-hen by analyzing the region featurf;; in ». branchL

view aggregation based on semantic parts, where thga s 6 predict what and where GSPs ‘are in multiple views.

proposed multi-attention further improves the dISCt‘Im-Fina”y’ by aggregating the featurg of the top K region

inability of learned features. proposalsr} in eachv’ in v, the global feature learning

branchG produces the global featugeof shapen. Our ap-

2 Related work proach to aggregating region proposal features is baséd on
Mesh-based deep learning models.To directly learn 3D  semantic part patterrés, with multi-attention for 3D shape
features from 3D meshes, different novel concepts, suchlassification, wherd,, are learned across all views in the
as circle convolutiodHan and others, 2016mesh convolu- global feature learning benchmaik
tion[Han and others, 20]1Were proposed to performindeep Generally semantic parts. We define a GSP as a local part
learning models. These methods aim to learn global or locah any semantic part category of any shape class, such as en-
features from the geometry and spatial information on meshegines of airplanes or wheels of cars. Although our concept
to understand 3D shapes. of GSPs simplifies all semantic part categories into a binary
Voxel-based deep learning models. Similar to images, label by only determining whether a part is semantic or not,
voxels have regular structure to be learned by deep learnhis allows us to exploit discriminative, part-level infoation
ing models, such as CRBMWVu and others, 2015fully con-  from several different 3D shape segmentation benchmarks fo
volutional denoising autoencodeiSharmaet al., 2016, C-  global feature learning.
NNs [Qi etal., 2014, GAN [Wu and others, 2016 These We use three 3D shape segmentation benchmarks involved
methods usually employ 3D convolution to better capturgn [Kalogerakis and others, 20} including ShapeNetCore,
the contextual information in local regions. Moreover, | aheled-PSB, and COSEG to construct the local part detec-
TagSZPartH\/lurallkrIShnanet al., 2018 d|SCOVeredlsemant|C tion benchmar@ and provide ground truth GSPs. We a|so S-
regions that strongly correlate with user-prescribed tags pjit the 3D shapes in each segmentation benchmark inte train
learning from voxels using a novel U-Net. _ ~ing and test sets according[iéalogerakis and others, 2017
Deep learning models for point clouds.As a series of pio-  Fig. 2 shows the construction of ground truth GSPs. For
neering work, PointNet+#Qi and others, 2017nspired var-  aach viewuv? of a 3D shapen shown in Fig. 2(a), we ob-
ious supervised methods to understand point clouds. Througain its ground truth segmentation visualized in Fig. 2¢ojf
self-reconstruction, FoldingNdivangetal., 201§ and La-  the shape segmentation benchmark. Then, we can isolate
tentGAN [Achlioptas and others, 2018earned global fea- each part category to precisely locate GSPs, as shown from
tures with different unsupervised strategies. _ Fig. 2(c) to Fig. 2(f). We emphasize each isolated part cat-
View-based deep learning models. Similar to the light  egory in blue, where we locate the corresponding GSPs by
field descriptor (LFD), GIFT[Bai and others, 2017mea-  computing the bounding box (red) of the colored regions. Fi-
sured the difference between two 3D shapes using their COfrally, we show all GSPs in view' in Fig. 2(g). We collect
responding view feature sets. Moreover, pooling panoramg|| GSPs of shape: by repeating these procedures in all it-
views[Shi and others, 2015; Sfikas and others, 3@it#en- 5/ views. Note that we omit small GSPs (for example the
dered viewsSu and others, 2015; Haal., 2019 is more  |anding gear in Fig. 2(f)) whose bounding boxes are smaller
widely used to learn global features. Differentimprovetsen than 0.45 of the max bounding box in the same part category.
from camera trajectorle&]ohnsetal., 2014, view aggrega-  pagion proposal moduleR. R provides region proposals
tion[Wanget al., 2017; Han and others, 2019pose estima- i iy 4| views v and their featureg, which are then for-

tion [Kanezakietal., 2018 are also presented. However, \jadeq to the local part detection and global feature learni
these methods can not leverage part-level information. ®ranches. Shared by all views in v, R is composed of

cgntras%t, Par(;s4Feature 'feaflf_‘s and tralnsk:‘elr? univerle_aJIkn a Deep Convolutional Network (DCN), and a Region Pro-
edge of part detection to facilitate 3D global feature lezgn o551 Network (RPN) with Region of Interest (Rol) pool-

ing [Girshick, 2015.
3 Parts4Feature DCN is modified from a VGGCNN_M_1024 net-
Overview. Parts4Feature consists of three main componentwork [Chatfieldet al., 2014, and it produces featurg® for
as shown in Fig. 1: a local part detection bradgha global  each vieww® as 512 feature maps of siz@ x 12. Based on
feature learning branci, and a region proposal modulg  f?, RPN then proposes region"jsin a sliding-window man-
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Figure 1: The demonstration of Parts4Feature framework.

is to detect GSPs from théregion proposals;ﬁ in each view
v'. We employL as an enhancer of RPN, wheteaims to
learn what and where GSPs arewdhwithout anchors in a

] more precise manner. The intuition is that this in turn pgshe

"u
|
| ’;I |
S
e

J_ ! . RPN to propose more GSP-like regions, which we provide to
g S z the global feature learning branth
ES Segment truth = We feed the region feature of i into a sequence of
9 (b) (@ €3) § fully connected layers followed by two output layers. The
B (o) (d) © o g first one estimates the GSP probability that ¢ is a GSP
=2 — ] — — 5 using a sigmoid function as an indicator. The second one
@ « i \ « - predicts the corresponding part locatignusing a bounding
g = — box regressor, wherg, represents the same bounding box
: E parameters afg; in RPN. Similar to the thresholflr in R, L

=
;1 employs another threshok, to assign positive and negative
labels for training. Denoting the ground truth probateti
Figure 2: The illustration of ground truth GSPs construttio and locations of positive and negative samples in RPasp’
andt’, and similarly forl. asp” andt”, the objective function
of Parts4Feature for GSP detection is formed by the lo&s in
ner. At each sliding-window location centered at each gikel andL, which is defined for each region proposal as follows,
f, aregion-i is proposed by determining its locatieg and
predict}!ng %SP probablilitie;sR with an anchor. The Iocz(ajtir?n g Or+L(pr,pL, P, 0"  tR, tn, ', 1) =
tr is a four dimensional vector representing center, width an , , 1 ,,
height of the bounding box. We LE)SG 6 scal%s and 3 aspect ra- Op(Pro 1) + A0 (tr, 1) + Op(pL, p7) + A0 (t1, ¢ )’(1)

tios to yield6 x 3 = 18 anchors, which ensures a wide range hereO. measures the accuracy in terms of GSP probabili-
of sizes to accommodate region proposals for GSPs that m hp f X yf itive label pm}
be partially occluded in some views. The 6 scales relative t by the crﬁss—entropy unction o fp)|03|t|ye % e;, w bg
the size of the views arf, 2,4, 8,16, 32], and the 3 aspect ]t:neas_ures the accuracy in terms of location by the robust
ratios arel : 1, 1 : 2, and2 : 1. Altogether, this leads to unction as m[Rgn and others, 2015The parameteh bal-
J— 9592 — 12 % 12 % 18 regionST;'. in each viewy: . gnces()p _andOt in bothR andL. It works well in our exper-
) . L ) iments with a value of 1. In summary, Parts4Feature has the

To train RPN to predict GSP probabilities,, we assign  powerful ability to detect GSPs by simultaneously levenggi
a binary label to each regior} indicating whether is &  {ne view-level featureg’ in R and the part-level featured
GSP. We assign a positive label if the Intersection-oveledn i, 1 " \hich addresses the difficulty of GSP detection from
(lov) overlap between; and any ground-truth GSP ¥ jtiple views caused by rotation and occlusion effects.
is higher than a thresholfr, and we use a negative label Gjopa| feature learning branch G. This branch learns to
o_ther\lee. In each view' we apply Rol pooling over re9|ons map the featureg} of the topk region proposals;, in each
given by.{tR} on featulre mapg*. Hencg, the featureﬁj of view v* in v to the 3D global featurg. To avoid information
all J region proposals} arebl12x7x7 dlmeerIOHal vectors, loss caused by W|de|y used poo”ng for aggregat@mcre_
which we forward to the local part detection brarich In  mentally aggregates alf x K region featuresf; in terms
addition, we provide the featurefy of the topK regionsr;  of semantic part patterr@, with multi-attention, where we
according to their GSP probabilify: to the global feature |earn the patterng, across all training data in the global fea-
learning branclts. ture learning benchmank. The motivation for learning part
Local part detection branch L. The purpose of this branch patterns to aggregate regions is that the appearance of GSPs



is so various that it would limit the discriminability of dbal 2 o8 j = Q b2 L = S
featuresf. Our multi-attention mechanism includes atten- : ‘;{ w F‘( : Fﬁ-m 9 F% 9 E/
tion weights for view aggregation on the part-level and the § ¢ 1:? 1&! ! &(m I? V’ ,L* F&r 'éi, ¥
part-pattern-level, denoted layandg3, respectively. Herex =y =2 - ' ] R
models how each of th&/ patternsd,, weights each of the ‘ l .T ﬂ ] “ l'l N—a lj . . ‘

V x K regionsr, while 3 measures how the final, global | L i 1

featuref weights each of thé/ pattern®,,. r l’( H = “‘ \L 1‘1 1‘ “ 1 D m }
Specifically, we employ a single-layer perceptron to Iearn 4 w« ek (g, \\ B e i R

6,., where,, has the same dimension #§. « is a(V x - ‘\() = RS\

K) x N matrix, where each entrg((, k), n) is the atten-

tion paid to each of théV x K) regionsr;, by then-th pat- ,\/\)H\{\a_ = \/h\/ A
tern8,,. o((i,k),n) is measured by a softmax function as
exp(wl fi+b,)/ D one1,N] exp(wl, fi+b,). With o, we
first aggregate allV x K') region featuregf;, into a pattern
specific aggregatiop,, in terms of each patter, by com-  where the number of samplgg| is a normalization factor and
pUting ", c 1 vy ren,x) @((i, k), 1) (8, — fi). Then, we fur- 7 is a balance parameter. SineandL are based on the ob-
ther aggregate alV pattern Specific aggregatio% into the ]eCt detection arChItQCture of Fast R-CNElrSthk, 201$,
final, global featuref of 3D shapen. This is performed by ~We adoptthe approximate approachien and others, 2015
linear weighting with theV' dimensional vectoB, such that  to jointly train R andL fast. In addition, we simultaneously
f= ZnE[l,N] B(n)e,,. For clarity of exposition, we explain Updateu. in the softmax classifier itz by 00¢ /Ou. and

the details of how we obtaif further below. 9B/ Ou.. This enables.. to be learned more flexibly for op-
Finally, we usef to classifym into one of C shape timization convergence, which is a connection acK@ss-or

classes by a softmax function after a fully connected layer he<|I> glcaje pharameterﬁlh L and(é car:j b? smul%e-
where the softmax function outputs the classification probousy upadated, otherwise, they are updated alternati¥ely

ik e : : le, parameters iR andL are first updated undebp,
abilities p, such that each probabilitp(c) is defined as ©€X&mMP .
exp(ul f + a.)/ ZC/E[I ol ex;?(ugf n ac(,)). The objective then, parameters iR (except RPN) andx are updated un-

. ; der ¥, and this process is iterated until convergence. In our
function ofG. is thle cross entropy betwegnand the ground following experiments we use— 1 .
truth probabilityp’,
Oc(p.p)=-Y_ p'(c)logp(c). 2) 4 Experiments and analysis
€[1,C]

Parameters. We investigate how some important parame-
#Trs affect Parts4Feature in shape classification undeeMod

Figure 3: The detected GSPs wijth > 0.6 in red boxes.

The intuition behind modelling part-pattern-level attent
is to enable Parts4Feature to weight the pattern specific a
gregationsp,, according to the 3D shape characteristics tha
it has learned. This leads Parts4Feature to differentietpes
in detail. To implement this3 is designed to capture the sim-
ilarities between each of th¥ pattern specific aggregations
wn and theC shape classes. To represent the characteristi
of C shape classes, we propose to employ the weighigs
the fully connected layer before the last softmax functam,
illustrated in Fig. 1. We first projeap,, andu, into a com-
mon space using matricdd; and W,. Then we compute
normalized similarities using a linear mapping withandg
as follows,3 = softmax(Wi[el]n + Walul]c)w + g),
where learnable parameteV®; and W, are N x N and
N x C dimensional matriceap andg ared and N dimen-
sional vectorsje], means stacking all vectorse into a ma-
trix row by row.

et[Wu and others, 2015

We first explore the loU thresholdsz in R andSy, in L
that are used to establish positive GSP samples using Mod-
elNet40[Wu and others, 2015as ¥, as shown in Table 1,

here we initially uséd/ = 12 views, K = 20 regions, and

= 256 patterns. WithSg = 0.7 and increasingy, from

0.5 to 0.8, the mean Average Presicion (mAP) under the test
set of ® decreases, and accordingly, the average instance ac-
curacy under the test set @ decreases, compared to the
highest classification accuraé$.40%. With Sy, = 0.5, we
also decreas€y to 0.5 and increase it to 0.8 respectively. The
mAP only slightly drops from 77.28 to 75.39 and 72.32, al-
though the corresponding accuracy decreases too. However,
the mAP and the accuracy are not strictly positive corrdlate
as shown by “(0.6,0.6)”, which has lower mAP but higher ac-

Training. We trainR andL together under a local part de- curacy than(0.8,0.5)"and *(0.5,0.5)". This comparisdsca

tection benchmarkp, andG under a global feature learning 'MPlies thatSy, affects part detection more thai.
benchmark®. The Parts4Feature objective is to simultane- N€Xt, we apply the parameters setting “(0.7,0.5)” under
ously minimize Eq. 1 and Eq. 2, which leads to the loss ModelNet10[Wu and others, 2015as shown by the first ac-
curacy 0f95.26% in Table 2. Increasingy, to 0.7 leads to an

) even better result ¢f6.15%. We also find the slight effect of
- i i K, N, andV on the performance.

||l Z(m)e«t Ot (Pro L Pt o 1) We visualize part detection and multi-attention involved i
_n Z Oc(p,p') our best result under ModelNet10 in Fig. 3 and Fig. 4, respec-
(|| €w T tively. Although there are no ground truth GSPs under Mod-

(3) elNetl0, Parts4Feature still successfully transfers nede-



Table 1: The effects afr andS1, on the performance of Parts4Feature under ModelNet40.

Metrics (0.7,0.5) (0.7,0.6) (0.7,0.7) (0.7,08) (0.5,0.5) (08,0.5) (0.6,0.6)
mAP  77.28  69.35 66.12 56.97 75.39 72.32 69.51
Acc 9340  93.15 92.38 92.50 92.67 92.71 92.95

Table 2: The effects af(, N andd on the performance of Parts4Feature under ModelNet10.

Metric Sp, =05 0.7 08 K=10 30 N=128 512 V=3 6
Acc 9526 96.15 94.38 94.38 94.93 94.49 95.04 94.27 94.93

Table 3: The view aggregation and attention comparison.

T T T
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MaxPool 90.97| NOAtt 92.84 Desk 001 006 0.00

MeanPool 92.19 PtAtt 93.17
NetVLAD 93.50| PnAtt 93.72 o
No L 93.61| MultiAtt 96.15 omter

Night stand [-0.00 0.00 0.01 0.00 0.8 0.00
Part
auennon
(a)Bathtub
Pattern ﬂ %D
attention#

00038 00037 00044 0.0030 00047 0.0040 00035 006/70059 0.0044 00 041 000j41

Dresser 0.00 0.00 0.00 -

0.00 0.00 0.00 -

0.00 0.05 0.00 -

Sofa 000 0.00 0.01 000 000 0.0

Table 000 0.00 0.00 009 0.00 0.00

Toilet ~0.00 0.00 001 000 0.0 0.00
I !

% % G
U

(b)Bcd )

. Figure 5: The classification confusion matrix under Modéide

—
k= \ Classification. Table 4 compares Parts4Feature with the
- state-of-the-art in 3D shape classification under ModelNet

The comparison are conducted under the same contlition
(c)Bathtub crar W Under both benchmarks, Parts4Feature outperforms all it-
atenionl® 03035 0057 0005 000 (044 D037 00T G001 OTUTETIS3 0.0ha1 00038 s competitors at the same condition, where “Our” are ob-
tained with the parameters of our best accuracy under Mod-
Figure 4: Multi-attention is visualized under the test deltlodel- elNet40 in Table 1 and the ones under ModelNet10 in Ta-

Net10.« and/3 are shown as matrices and numbers. ble 2. This comparison shows that Parts4Feature effegtivel

employs part-level information to significantly improveeth
discriminability of learned features. Parts4Featurede alit-
performing under ShapeNet55 with the same parameters of
our best results under ModelNet10, as shown by the compar-
ison in the last three rows in Table 7.

To better demonstrate our classification results, we visu-
alize the confusion matrix of our classification result unde
ModelNet10 and ShapeNet55in Fig. 5 and Fig. 6, respective-
ly. In each confusion matrix, an element in the diagonal line
means the classification accuracy in a class, while other ele

ents in the same row means the misclassification accuracy.

he large diagonal elements shows that Parts4Featureds goo
at classifying large-scale 3D shapes.

We also conduct experiments with reduced number
of segmented shapes for training under ModelNet10.
As shown in Table 5, trained by randomly sampled
{0%, 1%, 5%, 10%, 25%, 50%} of 6,386 shapes, our results

tection knowledge learned fro to detect GSPs in multiple
views. Moreoverg is learned to focus on the patterns with
high part attentions i, where the top-6 patterns with high
part attentions irx are shown below for clarity.

Ablation study. Finally, in Table 3 we highlight our seman-
tic part based view aggregation and multi-attention method
branchG under ModelNet10. We replace our view aggrega-,
tion with max pooling, mean pooling, and NetVLAD, where
we aggregatd’ x K region featuresf; for classification.
Although these results are good, our novel aggregation wit
multi-attention can further improve the results. For ea#lu
ing multi-attention, we keefr unchanged and set all entries
in « and3 to 1 (“NoAtt”). This leads to significantly worse
performance compared to our “MultiAtt”. Next, we employ
«a and 3 separately. We find that both of part attention and
part pattern attention improve “NoAtt”, but (“PtAtt”) con-
tributes less thagB (“PnAtt’). Moreover, we highlight the We use the same modality of views from the same camera sys-
effect of branchL as an enhancer of modukeby removing  tem for the comparison, where the results of RotationNefrara

L (“No L") from Parts4Feature, which is also justified by the Fig.4 (a) and (b) in https:/arxiv.org/pdf/1603.06208.ddoreover,
degenerated results. the benchmarks are with the standard training and test split



Table 4: The classification comparison ModelNet.

1
0.9

0.8

Methods Raw MN40 MN10

MVCNI[Su and others, 2015 View 90.10 - 506

MVVC[Qietal., 2014 Voxel 91.40 - BT

3DDtXie and others, 2018 Voxel - 92.40 7=k

PaiV{Johnset al., 2014 View 90.70 92.80 . i,

SphéCaoet al., 2017 View 9331 - B

G|FT[Ba| and others, 2017 View 89.50 91.50 % o1 02 03 04 Q05,06 07 08 09 1 % o1 02 03 04 203,06 07 08 09
RAMA[Sfikas and others, 2017 View 90.70 91.12 (2) ModeINet40 (b) ModelNet10
VRN[Brocket al., 2014 Voxel 91.33 93.80 ) ]

RNe{Kanezakiet al., 2014 View 90.65 93.84 Figure 7: The PR curve comparison under ModelNet.
PNetRQi and others, 2017 Point 91.90 - _ )

DSefWanget al., 2017 View 92.20 _ Table 6: The retrieval (mAP) comparison under ModelNet.
VGAN[Wu and others, 2016 Voxel 83.30 91.00 i

LAN [Achlioptas and others, 2018 Point 85.70 95.30_DPata Pano MVCN GIFT RAMA Trip Ours
SVSL[Han and others, 201Pa View 93.31 94.82 MNI10O 842 - 911 87.4 - 938
VIPG[Han and others, 2019b View 91.98 94.05

Our View 93.40 96.15
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MA [Sfikas and others, 201and Trip[Heet al., 2014 un-
der ModelNet.

As shown in Table 6, Table 7, our results outperfor-
m all the compared results in each benchmark. Besides
Taco [Cohenet al., 2019 in Table 7, the compared micro-
averaged results in Table 7 are from SHREC2017 shape re-
trieval contestSavva and others, 20[L&ith the same names.

In addition, the available PR curves under ModelNet40 and
ModelNet10 are also compared in Fig. 7, which also demon-
strates our outperforming results in shape retrieval.

Table 7: Retrieval and classification comparison in termiliafo-
averaged metrics under ShapeNetCore55.

Micro
Figure 6: The classification confusion matrix under Shagg5le Methods | P R F1 | mAP | NDCG
Kanezaki| 81.0 80.1 79.8| 77.2| 86.5
Zhou 78.6 77.3 76.7| 72.2 82.7
increase accordingly. The good results witi segmented Tatsuma | 76.5 80.3 77.2| 749 | 8238
shapes show that we not only learn from pixel-level infor-  Furuya | 81.8 68.9 71.2| 66.3 | 76.2
mation in 3D classification benchmarks, similar to existing Thermos| 74.3 67.7 69.2| 62.2 | 73.2
methods, but also improve performance further by absorbing Deng | 41.8 717 479| 54.0 | 654
part-level information from 3D segmentation benchmark. Li 53.5 25.6 28.2| 19.9 | 33.0
Retrieval. We further evaluate Parts4Feature in shape Mk 79.3 21.1 2531 19.2\ 27.7
retrieval under ModelNet and ShapeNetCore55 by com- SU_ 77.0 77.0 76.4| 735 | 815
paring with the state-of-the-art methods in Table 6 and Bai 70.6 69.5 68.9| 64.0 | 76.5
Table 7. These experiments are conducted under the Tac0 | 70.1 711 69.9| 676 | 75.6
test set, where each 3D shape is used as a query to_Our | 62.0] 804 |62.2] 859 ] 90.2
retrieve from the rest of the shapes, and the retrieval SVYSUHanand others, 201bg 85.5
performance is evaluated by mAP. The compared re- VIPG[Han and others, 2019h 83.0
sults include LFD, SHD, Fisher vector, 3D ShapeNet- Our classification 86.9

s[Wu and others, 2035Pano[Shi and others, 2015MVC-
N [Su and others, 2015GIFT [Bai and others, 2017 RA-

5 Conclusions

Table 5: The effect of less segmented shapes for training.

Acc 0% 1% 5% 10% 25% 50% 100%

Parts4Feature is proposed to learn 3D global features from
part-level information in a semantic way.
learns universal knowledge of generally semantic part de-

It successfully

Instance  93.0 935 938 938 941 94.36.15 eciion from 3D segmentation benchmarks, and effectively

Class

927 931 934 936 940 94.16.14 yansfersthe knowledge to other shape analysis benchmarks



by learning 3D global features from detected parts in mul{Han and others, 2019tZhizhong Han et al. View inter-
tiple views. Parts4Feature makes it feasible to improve 3D prediction gan: Unsupervised representation learning for
global feature learning by leveraging discriminative imfi@- 3D shapes by learning global shape memories to support
tion from another source. Moreover, our novel view aggre- local view predictions. IAAI, 2019.

gation with multi-attention can also benefit Parts4Featore [Hanet al., 2019 Zhizhong Han, Mingyang Shang, Xiyang
learn more discriminative features than widely used agayreg Wang, Yu-Shen Liu, and Matthias Zwicker. Y2,seq23eq:
tion procedures. Our outperforming results show that Part- cross-modal representation learning for 3D shape and text
s4Feature is superior to other state-of-the-art methods. by joint reconstruction and prediction of view and word

sequences. IAAAI, 2019.
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