
SDFDiff: Differentiable Rendering of Signed Distance Fields for 3D Shape
Optimization

Yue Jiang, Dantong Ji, Zhizhong Han, Matthias Zwicker
University of Maryland, College Park

Maryland, USA
{yuejiang, dji, h312h, zwicker}@cs.umd.edu

Abstract

We propose SDFDiff, a novel approach for image-based
shape optimization using differentiable rendering of 3D
shapes represented by signed distance functions (SDF).
Compared to other representations, SDFs have the advan-
tage that they can represent shapes with arbitrary topology,
and that they guarantee watertight surfaces. We apply our
approach to the problem of multi-view 3D reconstruction,
where we achieve high reconstruction quality and can cap-
ture complex topology of 3D objects. In addition, we employ
a multi-resolution strategy to obtain a robust optimization
algorithm. We further demonstrate that our SDF-based dif-
ferentiable renderer can be integrated with deep learning
models, which opens up options for learning approaches on
3D objects without 3D supervision. In particular, we apply
our method to single-view 3D reconstruction and achieve
state-of-the-art results.

1. Introduction

The “vision as inverse graphics” or “inverse rendering”
strategy has long been attractive as a conceptual framework
to solve inverse problems such as recovering shape or ap-
pearance models from images. In this analysis-by-synthesis
approach, the goal is to reproduce given input images by
synthesizing them using an image formation model, possi-
bly including shape, appearance, illumination, and camera
parameters. Solving this problem implies finding suitable
model parameters (shape, appearance, illumination, cam-
era) that describe the underlying scene. While conceptually
simple, this approach can be challenging to use in practice,
because it requires a suitable parameterization of a powerful
image formation model, and effective numerical techniques
to solve the resulting optimization problem. Recently, auto-
matic differentiation has attracted renewed attention to im-
plement differentiable renderers or image formation mod-
els, which can then be used in gradient-based optimization

techniques. In particular, it is attractive to combine differ-
entiable rendering with neural networks to solve highly ill-
posed inverse problems, such as single-view 3D reconstruc-
tion.

In this paper, we address the key issue of how to repre-
sent geometry in a differentiable image formation model. In
particular, we advocate using signed distance fields (SDFs)
because they have several advantages over other geometry
representations for inverse rendering. In contrast to trian-
gle meshes, the surface topology is not fixed in SDFs and
can adapt to the actual scene topology during optimization.
Point clouds can also represent arbitrary topologies but they
do not provide continuous surface reconstructions, while
SDFs inherently represent continuous, watertight surfaces.
In addition, SDFs can easily be used in a multi-resolution
framework, which is important to avoid undesired local
minima during optimization.

The main contribution of our paper is SDFDiff, a dif-
ferentiable renderer based on ray-casting SDFs. Our ren-
derer is integrated with a popular deep learning framework
such that it can be combined with neural networks to learn
how to solve highly ill-posed inverse problems. Finally,
we provide an effective multi-resolution strategy to improve
the robustness of gradient-based optimization. We demon-
strate the usefulness of our approach using several appli-
cation studies, including multi-view 3D reconstruction and
single-view 3D reconstruction using a neural network. Our
results demonstrate the advantages of SDFs over other sur-
face representations such as meshes or point clouds.

In summary, we make the following contributions:

• We introduce a differentiable renderer based on ray
casting SDFs, and we describe an implementation that
is integrated into a standard deep learning framework.
Advantages of using SDFs for differentiable rendering
and shape optimization include that we can adapt the
topology freely, and that the resulting shapes are guar-
anteed to consist of watertight surfaces.

• We present results of a multi-view 3D reconstruc-

1

ar
X

iv
:1

91
2.

07
10

9v
1

 [
cs

.C
V

]
 1

5
D

ec
 2

01
9

tion approach using shape optimization via differen-
tiable rendering. Using a multi-resolution approach,
our gradient-descent optimization reliably converges
to high quality solutions. Our approach is able to re-
construct geometry with high level of detail and com-
plex topology, even with few input views.

• We leverage the SDF-based differentiable renderer to
train deep neural networks to perform single-view 3D
shape reconstruction without 3D supervision. We
demonstrate the advantages of our approach by show-
ing how it can recover accurate 3D shapes with arbi-
trary topology.

2. Related Work
Learning-based 3D Reconstruction. Reconstructing 3D
models from 2D images is a classic problem in computer
vision. Compared to traditional multi-view stereo algo-
rithms and shading based approaches [43], learning-based
3D reconstruction techniques can achieve impressive per-
formance even with very sparse input consisting of very
few views. Deep learning models for 3D shape understand-
ing have been proposed for different kinds of 3D repre-
sentations, including multiple views[13, 14], point clouds
[51, 18], triangle meshes [27, 28], voxel grids [50, 47], and
signed distance functions (SDF)[39].

However, most learning-based methods [48, 46, 10, 1, 7,
19, 23] require 3D supervision. Even though some methods
[4, 16] are less supervised, they are often limited by specific
settings, such as restricted lighting conditions and required
annotation of object orientation. In contrast, predicting 3D
shapes with differentiable renderers has recently attracted
increasing attention because it promises to enable 3D re-
construction without 3D supervision, that is, by optimizing
neural networks only using images as training data.

Signed Distance Functions. A distance function is a level
set method [37] that, at each point in 3D, stores the distance
to the closest point on the surface of the object. Signed dis-
tance fields (SDFs) [8] store a signed distance function to
distinguish between the inside of outside of an object. SDFs
are often discretized using uniform voxel grids [34, 36].
Compared to meshes or parametric surfaces, the implicit
surface representation [31, 6] of SDFs has the advantage
that it can represent arbitrary topologies. In contrast to point
clouds, SDFs always represent watertight surfaces.

SDFs just recently started attracting research interest
for shape analysis via deep learning. DeepSDF [39] was
proposed as a learned continuous signed distance function
representation of a class of shapes. Similarly, deep level
sets [32] were introduced as an end-to-end trainable model
that directly predicts implicit surfaces of arbitrary topol-
ogy. However, these methods require 3D supervision dur-

ing training, such as a set of pairs of 3D coordinates and
their corresponding SDF values [39], or voxel occupancy
maps [32].

Differentiable Rendering Voxel-based differentiable
renderers [47, 11, 17, 20, 50, 12, 52, 49, 35] first drew
research attention. However, these methods perform
volumetric ray marching instead of computing ray-surface
intersections, and they are limited by the low resolution
of voxel grids. To render SDFs we use sphere tracing,
which is also used in scene representation networks [45].
However, they focus more on novel view synthesis rather
than 3D surface reconstruction, which is our goal. Re-
cently, much work focused on mesh-based differentiable
renderers [4, 16, 21, 29, 26, 5, 9, 41, 30, 2, 42, 38, 28].
Loper and Black [29] proposed the idea of differentiable
rendering in OpenDR, a general framework of mesh-based
differentiable renderer. With hand-designed gradients,
Kato et al. [21] proposed a neural 3D mesh renderer. These
two methods focus on the primary visibility gradients
using triangle meshes as geometric representations. Pa-
parazzi [27] employed analytically computed gradients
to adjust the location of vertices. Similarly, SoftRas [28]
assigned each pixel to all faces of a mesh in a probabilistic
rasterization framework. Although these methods enable to
learn 3D mesh reconstruction without 3D supervision, they
are restricted to a fixed, usually spherical mesh topology.
Many of these mesh-based rendering approaches are differ-
entiable with respect to geometry [4, 21, 29, 26, 9, 42, 28],
lighting models [5], textures [26, 41, 2], or materials
[41, 30, 2]. Petersen et al. [40] applied their mesh-based
differentiable renderer to real images.

Finally, differentiable rendering has also been applied to
perform Monte Carlo ray tracing [25] and point cloud ren-
dering [18, 19, 33]. Insafutdinov et al. [18] proposed a dif-
ferentiable renderer for point clouds with visibility model-
ing by conducting orthogonal projection on voxelized 3D
space holding the point cloud. Similarly, surface splat-
ting [51] was employed to model the visibility in point
cloud rendering. Although point clouds can be easily ac-
quired using range sensing technology, such as the Mi-
crosoft Kinect and LIDAR systems, they do not explicitly
represent topology and require post-processing to produce
watertight surfaces.

3. Overview

We propose a novel approach for image-based 3D shape
optimization by leveraging signed distance functions as the
geometric representation to perform differentiable render-
ing. Given a set of parameters Θ representing the geometry
description, lighting model, camera position, etc, a renderer
R can be written as a forward operator that produces an

2

image I by computing I = R(Θ). In contrast, optimiz-
ing geometry and other scene parameters from images is a
backward process that can be seen as an inverse rendering
problem. Given a desired target image I , our goal is to get
the set of parameters Θ = R−1(I) that produces the target
image. However, the rendering process itself is not invert-
ible. Hence, instead of solving the inverse rendering prob-
lem directly, we can formulate it as an energy minimization
problem,

Θ∗ = arg min
Θ

Limg(R(Θ), I) (1)

where Limg is a loss function measuring the distance be-
tween the target image and the rendered image from the
3D object. In practice, the loss is typically accumulated
over a set of multiple target images. Getting the desired pa-
rameters Θ∗ is equivalent to minimizing the loss L. While
all rendering parameters including geometry, illumination,
camera pose, and surface appearance could in theory be
recovered from images this way, we focus on shape opti-
mization in this paper and assume the other parameters are
known.

To enable practical, gradient-based optimization algo-
rithms, a key issue is to obtain the gradient of L(R(Θ), I)
with respect to the parameters Θ. To achieve this, a differen-
tible renderer produces not only images from a description
of the scene, but it can also provide the derivatives of pixel
values with respect to scene parameters.

In this paper, we propose a novel differentiable renderer
which uses signed distance functions (SDF) and camera
pose as inputs and renders an image. Our SDF-based dif-
ferentiable renderer leverages the ray casting algorithm and
uses automatic differentiation to compute the derivatives.

4. Differentiable SDF Rendering via Sphere
Tracing

We use an usual discrete SDF representation by sampling
SDF values on a regular grid, and we apply a standard ray
casting algorithm based on sphere tracing [15] to find the
intersection points between rays and the object surface. For
this purpose we employ trilinear interpolation to reconstruct
a continuous SDF that can be evaluated at any desired loca-
tion. This allows us to continuously represent the object
surface, which is given by the zero level set of the interpo-
lated SDF.

A key observation is that the derivatives of a given pixel
with respect to rendering parameters only depend on a local
neighborhood of eight SDF samples that define the value of
the trilinearly interpolated SDF at the surface intersection
point. In other words, the sphere tracing process itself does
not need to be differentiable. Instead, only the local compu-
tations involving the local set of eight SDF samples around

the surface intersection need to be differentiable. There-
fore, our approach proceeds in two stages: first, we apply
sphere tracing to identify the eight samples nearest to the
surface intersection. This step is not differentiable. Second,
we locally compute the pixel color based on the local set of
SDF samples. This step is implemented using an automatic
differentiation framework to obtain the derivatives.

Note that differentiable ray marching of voxel grids has
been used before [50, 52, 35]. However, in these approaches
the voxels represent opacities, either as binary variables or
as continuous occupancy probabilities. In these cases, ray
marching through the entire volume needs to be differenti-
ated because all voxels along a ray may influence the corre-
sponding pixel. In addition, in these techniques the compu-
tation of surface normals and evaluation of shading models
is not as straightforward as with SDFs.

4.1. Sphere Tracing

We perform ray casting via sphere tracing [15] in the
first stage by starting from the ray origin, and evaluating the
SDF using trilinear interpolation to find the minimum dis-
tance from the current point on the ray to the object. Then
we move along the ray by that distance. Moving along the
ray by the minimum distance to the object guarantees that
we will never move across the boundary of the object, but
it allows us to make a possibly large step towards the sur-
face. We repeat this process until we reach the surface of
the object, that is, until the SDF value at our current posi-
tion on the ray is small enough, or until we leave the bound-
ing box of the object. In practice, this stage is implemented
in conventional CUDA code without support for automatic
differentiation.

4.2. Differentiable Shading

In the second stage, we compute the pixel color as a func-
tion of the local SDF samples that define the SDF at the
intersection point, as determined by the first stage. In prac-
tice, these computations are implemented in a framework
that supports automatic differentiation, which allows us to
easily obtain the derivatives of the pixel. For each pixel, the
input to this stage consists of the light and camera param-
eters, and the eight SDF samples closest to the ray-surface
intersection point. In our current implementation the com-
putations include: getting the intersection point and the sur-
face normal at the intersection point as a function of the
basis coefficients, and evaluating a simple shading model.

To take into account the dependence of the pixel value
on the ray-surface intersection point, we express the in-
tersection point as a function of the eight local SDF sam-
ples. More specifically, let us denote the local SDF val-
ues by d0, . . . , d7. To express the intersection point as a
function of d0, . . . , d7, we use the same approximation as
in the ray casting stage. In addition, denote the current po-

3

sition on the ray (obtained from the ray casting stage) s,
and the unit ray direction v. Then, the approximate inter-
section is p(d0, . . . , d7) = s + trilinear(d0, . . . , d7; s)v,
where trilinear(d0, . . . , d7; s) is the trilinear interpolation
of the SDF at location s and considered as a function
of d0, . . . , d7. This approximation is conservative in the
sense that it is accurate only if the SDF represents a plane
that is perpendicular to the ray direction v. Otherwise,
p(d0, . . . , d7) is guaranteed not to cross the true intersec-
tion along the ray.

As an alternative to our conservative approximation, one
could express the intersection point exactly as the solution
of the intersection of the ray s + tv and the local trilinear
interpolation of the SDF. That is, we could express the so-
lution of trilinear(d0, . . . , d7; s + tv) = 0 with respect to
t as a function of d0, . . . d7. However, this involves finding
roots of a cubic polynomial, and we found that our much
simpler approach works more robustly in practice.

To evaluate a shading model, we need the surface normal
at the intersection point p(d0, . . . , d7). Considering that the
surface normal corresponds to the gradient of the SDF, we
first compute gradients at the grid vertices using central fi-
nite differencing, and then trilinearly interpolate them at the
intersection point p(d0, . . . , d7; s). In summary, this leads
to an expression of the normal at the intersection point as a
function of SDF coefficients within an 4× 4× 4 neighbor-
hood around the intersection (because of central finite dif-
ferencing). Finally, in our current implementation we eval-
uate a simple diffuse shading model.

4.3. Implementation

We implemented SDF ray casting using CUDA to lever-
age the computational power of GPUs. Differentiable shad-
ing is implemented in Python with the Pytorch library,
which supports automatic differentiation and allows seam-
less integration of the renderer with deep learning and neu-
ral network training. Pytorch also leverages the GPU, and
our Pytorch implementation directly accesses the output of
the ray casting stage that is stored in GPU memory, avoid-
ing any unnecessary memory transfers. We will open source
our code upon publication of this work.

5. Multi-view 3D Reconstruction
In this section we describe how to perform multi-view

3D reconstruction using our differentiable renderer. This is
a proof of concept, where we assume known camera poses,
illumination, and surface appearance, and we only optimize
over the 3D shape represented by the SDF.

5.1. Input

Our inputs for multi-view 3D reconstruction are multi-
view images for the target objects with known camera
poses. In addition, we initialize the SDF to a sphere. In

Figure 1. We use 26 input views in our multi-view reconstruction
experiments as shown here for the bunny.

our current experiments, we set the camera poses to point
from the center of each face and edge, and from each vertex
of the bounding box towards its center, where the bounding
box is a cube. Since the cube has 6 faces, 8 vertices, and 12
edges, we obtain 26 camera poses in total. Figure 1 shows
the input images we used to reconstruct the bunny in our
experiments.

5.2. Energy Function

As the image-based loss in our inverse rendering prob-
lem (Equation 1) we simply choose the L2 distance be-
tween the rendered images and the target views, that is
Limg(R(Θ), I) = ||R(Θ) − I||2. The loss is summed over
all target views. In this proof of concept scenario, the opti-
mization parameters Θ include only the SDF values, as we
assume the other rendering parameters are known.

In addition, we impose a regularization loss that ensures
that the SDF values Θ represent a valid signed distance
function, that is, its gradient should have unit magnitude.
Writing the SDF represented by Θ as a function f(x; θ),
where x is a point in 3D, the regularization loss is

Lreg =

∫
||1− ||∇f(x; θ)||2||2dx (2)

In practice, we obtain the gradients via finite differencing
and we compute a discrete sum over the SDF grid vertices.

5.3. Iterative Optimization

We apply gradient descent optimization using
ADAM [22] to iteratively optimize our SDF grid to
match the target images. In addition, we accelerate conver-
gence by greedily selecting a single view in each gradient
descent step to compute the gradient, similar to active mini
batch sampling. The intuition is that different views may
incur image losses of varying magnitude, and we should
focus on the views with large losses. Our approach first
calculates the average loss for all the camera views from the
result of the previous iteration. If a loss for a view is greater

4

GT

Ours

DSS [51]

Figure 2. Multi-view reconstruction results comparing with the state-of-the-art point-based differentiable rendering approach DSS [51].

than the average loss, then during the current iteration,
we update SDF until the loss for this view is less than the
average (with 20 max updates). For the other views, we
update the SDF five times. If one update increases the
loss, then we switch to the next view directly. We stop our
optimization process when the loss is smaller than a given
tolerance or the step length is too small.

Reconstructing high-resolution 3D objects is challenging
because gradient descent takes many iterations to eliminate
low frequency errors. Therefore, we apply a coarse-to-fine
multi-resolution approach. We start by initializing the SDF
grid at a resolution of 83 to the SDF of a sphere. We then it-
erate between performing gradient descent optimization as
described above, and increasing the grid resolution. We in-
crease the resolution simply by performing trilinear inter-
polation. In our experiments, we stop at a SDF resolution
of 5123.

To further improve the efficiency of the multiresolution
scheme, we choose an appropriate image resolution for ren-
dering corresponding to the SDF resolution at each reso-
lution level. We determine the appropriate resolution by
ensuring that a sphere with a radius equivalent to the grid
spacing, and placed at the corner of the bounding box of the
SDF furthest from the camera, has a projected footprint of
at most the size of a 2× 2 pixel block.

5.4. Experimental Results

Qualitative Results. We compare our results with
DSS [51], which is a differentiable renderer for point clouds
based on surface splatting [53]. We let both systems deform
a sphere to fit the target object given as input. When running
DSS, we adopt the same settings used in their original ex-
periments: the system randomly selects 12 from a set of 26
views of the target in each optimization cycle, and optimizes
for up to 16 cycles. We experimented with different num-
bers of 3D points and report the best result. For SDFDiff
we use our optimization technique from Section 5.3 using
the same set of 26 views. Figures 2 and 3 show the compar-

GT

Ours

DSS
[51]

SMVS
[24, 44]

Figure 3. Multi-view reconstruction results from 26 views com-
paring with DSS [51] and SMVS [24, 44] on dragon.

ison between SDFDiff and DSS. DSS cannot recover the
details of the mesh as accurately as SDFDiff, and is unable
to reconstruct complex geometry like the Chinese dragon
sculpture.

We also compare our result with SMVS [24, 44], which
is a state-of-the-art shading-aware multi-view 3D recon-
struction approach. We use the default settings, and pro-
vide 1000 randomly sampled views of the Chinese dragon
rendered by our SDF renderer as input. Note that SMVS
automatically recovers camera parameters from the input
images and also estimates surface albedo and illumination,
hence the comparison is not entirely fair. As shown in Fig-
ure 3, however, even with a large number of input views the
SMVS output has holes and suffers from noise. In contrast,
SDFDiff can obtain better results using only 26 views (with
known camera poses, albedo, and illumination).

5

init res=8

init res=16

init res=32

init res=48

Figure 4. Given different initial resolutions, with 4 resolution
stages, we can find that our 3D reconstruction results are better
if the initial resolution is lower.

1 step

4 steps

8 steps

15 steps

Figure 5. We fix the initial and target resolution to 8 and 64 respec-
tively, but use different numbers of intermediate resolution stages.
We find that more resolution stages can give us better results.

Quantitative Results. Table 1 compares the symmetric
Hausdorff distance between ground truth and reconstructed
meshes for torus, bunny and dragon. For a fair comparison,
we report errors relative to the size of the bounding boxes.
We observe that SDFDiff leads to smaller symmetric Haus-
dorff distances, which means our reconstruction results are
closer to the ground truth than the other two approaches.

5.5. Parameter Study

Initial Resolution. Figure 4 shows the impact of the ini-
tial resolution in our multi-resolution scheme. We fix the
number of multi-resolution steps and our target resolution
being 64, and then set the initial resolution to be 8, 16,
32, and 48 respectively. We find that a lower initial res-
olution can reconstruct qualitatively better 3D shapes be-
cause it more robustly captures the large scale structure of
the shape.

Number of Multi-Resolution Steps. In Figure 5, we
show that given the fixed initial SDF resolution (init res=8)
and target resolution (target res=64), adding more multi-
resolution steps can give us better results. We demonstrate
that single-resolution optimization (1 step) cannot recon-
struct the object successfully, so multi-resolution scheme is
necessary in our setup.

img res = 64 img res = 128 img res = 256 img res = 512

Figure 6. We show that the quality of reconstruction results are not
affected much by the image resolution.

Object Ours DSS [51] SMVS [24, 44]
Torus 0.015637 0.035398 N/A
Bunny 0.026654 0.109432 N/A
Dragon 0.074723 0.179456 0.097816

Table 1. Comparison of the symmetric Hausdorff distance be-
tween ground truth and reconstructed meshes for torus, bunny and
dragon. SMVS could not reconstruct torus and bunny because
camera pose estimation failed.

Image Resolution. As shown in Figure 6, image reso-
lution does not significantly affect the quality of the final
results, where we use the images with various resolutions in
optimization.

6. Single-view Reconstruction using Deep
Learning

In the following experiments, we leverage SDFDiff to
train a neural network to perform single-view 3D recon-
struction without 3D supervision. We use the same dataset
as [21, 28], which includes 13 categories of objects from
ShapeNet [3]. Each object had 24 rendered images from
different views with image resolution of 64 × 64. We use
the same train/validate/test sets on the same dataset as in
[21, 28, 50]. We use the standard reconstruction metric,
i.e., 3D intersection over union (IoU) [28] for quantitative
comparisons.

Network. Our network contains two parts as shown in
Figure 7. The first part is an Encoder-Decoder network
which takes images as input and outputs coarse SDF results.
The second part is a refiner network to further improve the
quality of the 3D reconstruction results.

Loss Function. In addition to the energy function as
shown in Section 5.2 containing the L2 image-based loss
Limg and the SDF loss Lreg ensuring the SDF values repre-
sent a valid signed distance function, we also add a geom-
etry loss Lgeo that regularizes the finite difference Lapla-
cian of the predicted SDFs. Furthermore, we use a narrow
band technique to control the effects of the SDF and Lapla-
cian losses. Since we care more about these two losses lo-
cally around the surfaces, we can use a distance-based bi-
nary maskM to zero them out further away from the zero

6

Category Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean
NMR [21] 0.6172 0.4998 0.7143 0.7095 0.4990 0.5831 0.4126 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6015

SoftRas (sil.) [28] 0.6419 0.5080 0.7116 0.7697 0.5270 0.6156 0.4628 0.6654 0.6811 0.6878 0.4487 0.7895 0.5953 0.6234
SoftRas (full) [28] 0.6670 0.5429 0.7382 0.7876 0.5470 0.6298 0.4580 0.6807 0.6702 0.7220 0.5325 0.8127 0.6145 0.6464

DIB-R [5] 0.570 0.498 0.763 0.788 0.527 0.588 0.403 0.726 0.561 0.677 0.508 0.743 0.609 0.612
Ours 0.6874 0.6860 0.7735 0.8002 0.6436 0.6584 0.5150 0.6534 0.5553 0.7654 0.6288 0.8278 0.6244 0.6674

Table 2. Comparison of IoU with the state-of-the-art approaches [21, 28, 5] on 13 categories of ShapeNet dataset.

Figure 7. Network structure for single-view SDF reconstruction.

level-set. Hence the mask is defined as

M = ||SDF || ≤ µ× voxelSize. (3)

where µ is a hyperparameter to define the width of the nar-
row band. We currently set it to be 1.6. The final loss func-
tion is a weighted sum of the three losses,

L = Limg +M⊗ (λ1Lreg + λ2Lgeo). (4)

Training Process. We first train the Encoder-Decoder
part of the network alone based on the three loss terms.
Then we fix the encoder and decoder and train the refiner
network on the same three loss terms to get refined SDF
shapes. In the end, we train all the three parts, i.e., encoder,
decoder, and refiner together to further improve the results.
We do not use the multi-resolution approach in this applica-
tion scenario.

Qualitative Evaluation. Figure 8 shows that our method
can reconstruct detailed objects and accurately recover
complicated topologies. In contrast, SoftRasterizer [28] re-
lies on a template mesh with spherical topology and it can-
not capture the complex topology of the chairs.

Quantitative Evaluation. We compare our method with
the state-of-the-art approaches [21, 28, 5] in terms of 3D
IoU scores in Table 2. Our method can reconstruct shapes
with finer details in the 13 categories. In addition, the IoU
show that our results achieve higher accuracy. Our scores
have surpassed other approaches in most of the categories.

7. Discussion and Limitations
To our knowledge, our approach is the first to use SDFs

as the geometric representation in a differentiable renderer.

We offer a higher level of freedom for topological changes
compared to triangle meshes, which are typically restricted
to the topology of a template mesh. In contrast to point
clouds, SDFs inherently represent continuous watertight
surfaces. We demonstrated applications of our approach
in multi-view shape reconstruction, and single view 3D
reconstruction using deep learning. Our experimental re-
sults showed that we can more robustly perform multi-view
reconstruction than a state-of-the-art point-based differen-
tiable renderer. In addition, we achieve state-of-the-art re-
sults on single view 3D reconstruction with deep learning
models.

In our multi-view 3D reconstruction approach, our cur-
rent simple shading model is not sufficient to perform in-
verse rendering from real images taken with a camera. For
example, the current model does not include effects such as
shadows, interreflections, texture, non-diffuse surfaces, or
complex illumination. In contrast to rasterization-based dif-
ferentiable renderers, our ray tracing-based renderer could
be extended to include all such effects. A disadvantage
of our deep learning approach is that we output a discrete
SDF on a 3D grid. Instead, we could learn a continuous
signed distance function represented by a deep network like
in DeepSDF [39]. This would be more memory efficient,
but it might be computationally too expensive for unsuper-
vised 3D reconstruction with differentiable rendering, since
it would require to evaluate the network for each ray march-
ing step.

8. Conclusions
We proposed a novel approach to differentiable ren-

dering using signed distance functions to represent water-
tight 3D geometry. Our rendering algorithm is based on
sphere tracing, but we observe that only the local shading

7

Method Input Image Rendered Views Input Image Rendered Views

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

Figure 8. Single-view reconstruction results for airplanes, chairs, and benches.

computation needs to be differentiable in our framework,
which makes the approach computationally more efficient

and allows for straightforward integration into deep learn-
ing frameworks. We demonstrate applications in multi-view

8

3D reconstruction and unsupervised single view 3D recon-
struction using deep neural networks. Our experimental re-
sults illustrate the advantages over geometry representations
such as point clouds and meshes. In particular, we report the
state-of-the-art results in shape reconstruction.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas J. Guibas. Representation learning and adversarial
generation of 3d point clouds. CoRR, abs/1707.02392, 2017.

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin
Kwok. Synthesizing robust adversarial examples. CoRR,
abs/1707.07397, 2017.

[3] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.
Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich
3d model repository. ArXiv, abs/1512.03012, 2015.

[4] Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala,
and Ioannis Gkioulekas. Inverse transport networks. CoRR,
abs/1809.10820, 2018.

[5] Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer, 2019.

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2016.

[8] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’96, 1996.

[9] Amaël Delaunoy and Emmanuel Prados. Gradient flows
for optimizing triangular mesh-based surfaces: Applications
to 3d reconstruction problems dealing withvisibility. Inter-
national Journal of Computer Vision, 95(2):100–123, Nov
2011.

[10] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point
set generation network for 3d object reconstruction from a
single image. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[11] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape
induction from 2d views of multiple objects. 2017 Inter-
national Conference on 3D Vision (3DV), pages 402–411,
2016.

[12] J. Gwak, C. B. Choy, M. Chandraker, A. Garg, and S.
Savarese. Weakly supervised 3d reconstruction with adver-
sarial constraint. In 2017 International Conference on 3D
Vision (3DV), pages 263–272, Oct 2017.

[13] Zhizhong Han, Mingyang Shang, Yu-Shen Liu, and Matthias
Zwicker. View Inter-Prediction GAN: Unsupervised repre-
sentation learning for 3D shapes by learning global shape

memories to support local view predictions. In AAAI, pages
8376–8384, 2019.

[14] Zhizhong Han, Mingyang Shang, Xiyang Wang, Yu-Shen
Liu, and Matthias Zwicker. Y2Seq2Seq: Cross-modal repre-
sentation learning for 3D shape and text by joint reconstruc-
tion and prediction of view and word sequences. In AAAI,
pages 126–133, 2019.

[15] John C. Hart. Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Com-
puter, 12(10):527–545, Dec 1996.

[16] Paul Henderson and Vittorio Ferrari. Learning to generate
and reconstruct 3d meshes with only 2d supervision. CoRR,
abs/1807.09259, 2018.

[17] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Es-
caping plato’s cave using adversarial training: 3d shape
from unstructured 2d image collections. arXiv preprint
arXiv:1811.11606, 2018.

[18] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds.
In Advances in Neural Information Processing Systems,
pages 2807–2817, 2018.

[19] Li Jiang, Shaoshuai Shi, Xiaojuan Qi, and Jiaya Jia. Gal:
Geometric adversarial loss for single-view 3d-object recon-
struction. In The European Conference on Computer Vision
(ECCV), September 2018.

[20] Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mo-
hamed, Peter Battaglia, Max Jaderberg, and Nicolas Heess.
Unsupervised learning of 3d structure from images. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems
29, pages 4996–5004. Curran Associates, Inc., 2016.

[21] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014.

[23] A. Kurenkov, J. Ji, A. Garg, V. Mehta, J. Gwak, C. Choy,
and S. Savarese. Deformnet: Free-form deformation network
for 3d shape reconstruction from a single image. In 2018
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 858–866, March 2018.

[24] F. Langguth, K. Sunkavalli, S. Hadap, and M. Goesele.
Shading-aware multi-view stereo. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2016.

[25] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6):222:1–222:11, 2018.

[26] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek
Nowrouzezahrai, and Alec Jacobson. Adversarial geom-
etry and lighting using a differentiable renderer. CoRR,
abs/1808.02651, 2018.

[27] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Pa-
parazzi: Surface editing by way of multi-view image pro-
cessing. ACM Transactions on Graphics, 2018.

[28] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-

9

ing. The IEEE International Conference on Computer Vi-
sion, 2019.

[29] Matthew M. Loper and Michael J. Black. OpenDR: An ap-
proximate differentiable renderer. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2014.

[30] Abhimitra Meka, Maxim Maximov, Michael Zollhoefer,
Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt,
and Christian Theobalt. Lime: Live intrinsic material es-
timation. In Proceedings of Computer Vision and Pattern
Recognition (CVPR), June 2018.

[31] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019.

[32] Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders P. Eriksson. Deep level
sets: Implicit surface representations for 3D shape inference.
CoRR, abs/1901.06802, 2019.

[33] KL Navaneet, Priyanka Mandikal, Mayank Agarwal, and
R Venkatesh Babu. Capnet: Continuous approximation pro-
jection for 3d point cloud reconstruction using 2d supervi-
sion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 8819–8826, 2019.

[34] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. KinectFusion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, ISMAR 2011, 2011.

[35] Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-
Liang Yang. Rendernet: A deep convolutional network for
differentiable rendering from 3d shapes. In Advances in Neu-
ral Information Processing Systems 31, 2018.

[36] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3D reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics, 2013.

[37] S Osher, R Fedkiw, and K Piechor. Level Set Methods and
Dynamic Implicit Surfaces. Applied Mechanics Reviews,
2004.

[38] Andrea Palazzi, Luca Bergamini, Simone Calderara, and
Rita Cucchiara. End-to-end 6-dof object pose estimation
through differentiable rasterization. In The European Con-
ference on Computer Vision (ECCV) Workshops, September
2018.

[39] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Represen-
tation. arXiv e-prints, page arXiv:1901.05103, Jan 2019.

[40] Felix Petersen, Amit H. Bermano, Oliver Deussen, and
Daniel Cohen-Or. Pix2vex: Image-to-geometry recon-
struction using a smooth differentiable renderer. CoRR,
abs/1903.11149, 2019.

[41] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing
framework for inverse rendering. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, pages 117–128, New York,
NY, USA, 2001. ACM.

[42] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel.
Learning detailed face reconstruction from a single image.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5553–5562, 07 2017.

[43] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R.
Szeliski. A comparison and evaluation of multi-view stereo
reconstruction algorithms. In 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 1, pages 519–528, June 2006.

[44] Ben Semerjian. A new variational framework for multiview
surface reconstruction. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 2014.

[45] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. CoRR,
abs/1906.01618, 2019.

[46] S. Tulsiani, A. Kar, J. Carreira, and J. Malik. Learning
category-specific deformable 3d models for object recon-
struction. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 39(4):719–731, April 2017.

[47] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
209–217, 2017.

[48] Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First
experiments with neural translation of informal to formal
mathematics. CoRR, abs/1805.06502, 2018.

[49] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun,
William T Freeman, and Joshua B Tenenbaum. MarrNet:
3D Shape Reconstruction via 2.5D Sketches. In Advances In
Neural Information Processing Systems, 2017.

[50] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning single-
view 3d object reconstruction without 3d supervision. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.
Garnett, editors, Advances in Neural Information Process-
ing Systems 29, pages 1696–1704. Curran Associates, Inc.,
2016.

[51] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and
Olga Sorkine-Hornung. Differentiable surface splatting for
point-based geometry processing. ACM Transactions on
Graphics (proceedings of ACM SIGGRAPH ASIA), 38(6),
2019.

[52] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,
Antonio Torralba, Joshua B. Tenenbaum, and William T.
Freeman. Visual object networks: Image generation with
disentangled 3D representations. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2018.

[53] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. Surface splatting. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, pages 371–378, New York,
NY, USA, 2001. ACM.

10

