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Abstract—Learning 3D global features by aggregating multiple
views has been introduced as a successful strategy for 3D fea
analysis. In recent deep learning models with end-to-end &ining,
pooling is a widely adopted procedure for view aggregationHow-

HE 2D views taken around 3D shapes have been shown
to be effective for learning 3D global features for
3D shape analysis, such as 3D shape classification and re-

ever, pooling merely retains the max or mean value over all @ws, trieval [1]-{8]. View-based methods understand a 3D shape b

which disregards the content information of almost all views learning its global feature via aggregating the multiplews
and also the spatial information among the views. To resolve taken around it. Due to their independence of 3D geometry

these issues, we propose Sequential Views To Sequential ke processing, view-based methods are capable of understandi
(SeqViews2SegLabels) as a novel deep learning model with an

encoder-decoder structure based on Recurrent Neural Netwks
(RNNs) with attention. SeqViews2SeqgLabels consists of two
connected parts, an encoder-RNN followed by a decoder-RNN,
that aim to learn the global features by aggregating sequerdl
views and then performing shape classification from the leared
global features, respectively. Specifically, the encod&NN learns
the global features by simultaneously encoding the spatighand
content information of sequential views, which captures te
semantics of the view sequence. With the proposed predictio
of sequential labels, the decoder-RNN performs more accuta
classification using the learned global features by prediatg se-
quential labels step-by-step. Learning to predict sequeial labels
provides more and finer discriminative information among shape
classes to learn, which alleviates the overfitting problemnherent
in training using a limited number of 3D shapes. Moreover,
we introduce an attention mechanism to further improve the
discriminative ability of SeqViews2SeglLabels. This mechasm
increases the weight of views that are distinctive to each spe
class, and it dramatically reduces the effect of selectinche first
view position. Shape classification and retrieval results mder
three large-scale benchmarks verify that SeqViews2SeqlLals
learns more discriminative global features by more effectiely
aggregating sequential views than state-of-the-art mettus.

Index Terms—3D feature learning, Sequential views, Sequen-
tial labels, View aggregation, RNN, Attention.
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both manifold and non-manifold 3D shapes. More importantly
this advantage also alleviates the difficulty of learninatfees
directly from irregular 3D shapes (i.e., arbitrary vertesa-
lution, irregular vertex topology and orientation ambiguin

3D surface) [9]-[12], especially for deep learning modéls [
[10], [12]. Therefore, how to aggregate multiple views f@ 3
feature learning has become an important research topiD in 3
shape analysis and understanding.

Recently, deep learning models have been very successful
at learning 3D features by aggregating the information of
multiple views. To perform end-to-end optimization in deep
learning models, max pooling or mean pooling [3], [4], [6]—
[8], [13] is always used to aggregate the content infornmatio
of multiple views into global features. Although poolingnca
make global features invariant to the rotation of 3D shapes t
certain extent, it was designed as a procedure of informatio
abstraction in deep learning models, and it inevitably dose
the content information of almost all views and the spatial
information among the views. Thus, it remains a research
challenge to learn 3D global features by more effectively
aggregating the content and spatial information of mudtipl
views using deep learning.

To tackle this challenge, we propoSequential Views To
Sequential Label§SeqViews2SeqLabels), a novel deep learn-
ing model that learns 3D global features by simultaneously
aggregating the content and spatial information of mudtipl
views of a 3D shape. To enhance the discriminability of
learned features via efficiently using the spatial infoinrat
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rounding the 3D shapes. This forms the sequential views to
be learned from in our work. SeqViews2SegLabels forms an
encoder-decoder structure based on Recurrent Neural Retwo
(RNN) [14]. Specifically, an encoder-RNN learns the global
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content information of all sequential views and the spatial
information among them. In this way, the semantics of the
view sequence, which is robust to the first view position, can
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be learned. Subsequently, an decoder-RNN maps the learAedMesh-based methods

feature into sequential labels, which are also organized in 3p mesh is an important raw representation for 3D shapes.
sequential manner for shape classification. The learning gf3p mesh is composed of vertices which are connected by
sequential label prediction is proposed to present more aélﬂ’ges. To learn features from 3D meshes directly, seveeg de
finer discriminative information among diffe_rent shapes_shgs learning models have been proposed. Han et al. [9] proposed
for the decoder-RNN to capture. This alleviates the ovet§tt cjrcle convolutional restricted boltzmann machine to fear
problem inherent in training using a limited number of 313 |oca) features based on a novel circle convolution in an
shapes. Moreover, the decoder-RNN also introduces an-attgRsypervised way. To learn global features via hierardlica
tion mechanism to further increase the discriminativeitgbil abstracting from local information, Han et al. [10] further
of Squiews_ZSeqLabeIs. The attent_ion mechanisr_n ad_aptivs}oposed mesh convolutional restricted boltzmann maghine
learns to weigh the content information of sequential viéws \yhich simultaneously encodes the geometry of local regions
predict each sequential label. The attention weight higit 5y the spatiality among them. With heat diffusion based
the views that are distinctive to the shape class indicated Qescriptor, Jin et at. [15] proposed DeepShape to learn 3D
a sequential label and suppresses other views. This assigbhal features. Similarly, Jonathan et al. [16] learned 3D
the encoder-RNN to learn the semantic meaning of the VigWayres from hand-crafted features on 3D surface by a novel
sequence and dramatically reduces the effect of choosig o gesic convolutional neural network. To explore theikiias
first view position. In summary, our main contributions ase 3ty of learning features in spectral domain, Davide et a¥][1
follows: proposed localized spectral convolutional network to quenf
i) We propose SeqViews2SeqLabels as a novel deep leasdpervised local feature learning. Also in the spectral @om
ing model for 3D global feature learning by more efJin et al. [18] learned binary spectral shape descriptoBir
fectively aggregating sequential views, preserving trghape correspondence. By encoding the spatial relatipsishi
content information of all sequential views and the spati@imong virtual words on 3D meshes, Han et al. proposed deep
information among the views. spatiality [19] to simultaneously learn 3D global and local
ii) To the best of our knowledge, SeqViews2SeqLabels is theatures with novel coupled softmax. However, these method
first fully RNN-based 3D global feature learning methogan only be used to learn features from smooth manifold
based on aggregating multiple views, which verifies th@eshes.
usefulness of RNN for 3D global feature learning.
i) We propose to perform shape classification by pred@cting \oxel-based methods

sequential labels in a step-by-step way, where the tas .
of predicting sequential labels provides more and finer oxel-based methods learn 3D features from voxels which

discriminative information among the shape classes Egpresent 3D shapes by the distribution of corresponding

learn. This alleviates the overfitting problem inherent iRlnary variables. Wu et al. [20] pr(_)posed 3D ShapeNets
training using a limited number of 3D shapes to learn global features from voxelized 3D shapes based

iv) We propose an attention mechanism to further increase n convolutional restricted boltzmann machine. Sharma et

discriminative ability of SeqViews2SeqgLabels by increa" [21] employed fully convo!utlonal denoising autoelj_eod
ing the weight of distinctive views for each shape claslsc.) robustly. perform unsuperv!sed glopal feature Iearnqu;; v
This also assists the encoder-RNN to learn the Semanql%composmg an_d reconstructing voxelized 3D shape_s. @irdh
meaning of the view sequence and it dramatically reduc%%al' [22] combined voxels and the corresponding images to
the effect of choosing the first view position. learn global features by a novel T'L. netvx{o.rk based on CNN.
To employ the generative adversarial training manner, Wu et
This paper is organized as follows: We review the reyl. [23] learned 3D global features by a novel 3DGAN which
lated work in Section II, and present the details of Sgs composed of a generator and a discriminator. By analysing
qViews2SeqLabels in Section Ill. We describe our experimethe reason why the performance of voxel-based methods are
tal setup and results in Section IV and Section V, respdgtivealways not as good as view-based methods, Qi et al. [13]
Finally, we draw conclusions in Section VI. employed CNN to learn global features from novel voxel
representations, where max pooling is used to aggregate the
information captured from different orientations. To spegp
Il. RELATED WORK the learning from voxels by deep learning models, Wang et
al. [24] proposed O-CNN to learn global features based on a
In this section, the methods of learning 3D features by deapvel octree data structure. To learn local features frorteg
learning models are reviewed. These methods are catedorikan et al. [12] proposed a novel voxelization permutation
in terms of different raw 3D representations that are ledrnstrategy to eliminate the effect of rotation and orientatio
from, including meshes, voxels and views. In addition, thembiguity on the 3D surface. Although voxel-based methods
existing view aggregation procedures are emphasized in theeve the advantage of generating 3D shapes, they not only
reviewed methods, which highlights the novelty of our RNNaeed heavy computational cost but also require 3D shapes to
based view aggregation employed in SeqViews2SeqglLabdis. aligned. In addition, this kind of methods always perform
Finally, we also review the methods with similar structufe aiscriminating shapes worse than the following view-based
SeqViews2SeqLabels in other applications. methods.
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C. View-based methods D. CNN-RNN based and RNN-RNN based models
d SeqViews2SeqLabels is similar to CNN-RNN based and

3D descriptor, which employs features of 2D silhouettes fRNN-RNN based models. Different from multiple views,
multiple views of 3D shapes. Instead of aggregating muliMiyagi et al. [32] employed multiple voxel slices to learn 3D
view information into global features, LFD evaluates th@lobal features. They used CNN to extract the feature of each
dissimilarity between two shapes via comparing 2D featur¥@X€l slice, and then, used RNN for view aggregation, where
of their corresponding two view sets in a greedy way. By tHa spftmax was employed to conduct 3D shape classification.
same strategy, GIFT [5] measures the difference between titgnd & two-layer RNN, Truc etal. [33] proposed a CNN-RNN
shapes by the Hausdorff distance between their correspgndi?ode! to segment 3D shapes, where multiple edge images
view sets. To bridge 2D sketches and 3D shapes for shaYﬁ%re predicted to estimate the different parts on a 3D shape.

retrieval, barycentric representations of 3D shapes wege p/! 2ddition, RNN-RNN based models, especially seq2seq
posed to be learned from multiple views [26]. models, were originally proposed for text understandinge D

DeepPano [6] was proposed to learn features fro}% their powerful learning ability, they have been sucaodbsf

PANORAMA views using CNN, where a PANORAMA view employed for image and speech understanding, such as scene

. : -fext recognition [34], [35], image caption generation [36]
can be regarded as the seamless aggregation of multiple wé%&( I .
captured on a circle. To eliminate the effect of rotationwtboand speech recognition [37]. The models in [34]-[36] were

the up-oriented direction, row-wise max pooling was intro[_)roposed to recognize what are in a single image. For ex-

duced in DeepPano. With pose normalization, Sfikas et a). [ ple, [34], [35] focused on how to recognize the characters

used CNN to learn 3D features from multiple PANORAMA" " image, [36] focused on how to recognize the concepts

views which were stacked together in a consistent ordd}, an Image. Different from their tasks, SeqViews2SeqLsbel

Similarly, using another hand-crafted feature, geometrgge, recognize what a view sequence of multiple views is. This

Sinha et al. [28] proposed to learn 3D features from geomef? erence makes the involved attention play differenesolin

images. In addition, RotationNet [29] is proposed to learh " method, we want to use attention to highlight the views

global features by treating pose labels as latent variatiésh m:}h &sx:cwtehcgﬁqwgftsgjgcz to :sr;r:]sza?rislsasit?rpi?:ntion
are optimized to self-align in an unsupervised manner. 9 PP ' '

. weights are computed at the image level. In the methods
Recently, Su et al. [3] proposed Multi-View CNN to leam ¢ 1ag: 1361 attention is used to highlight the parts with a

3hDa g(laogalr;eﬁftulrees _;rom trr?;l(t:'g:ﬁe\:te_vr\]'fsar;%t%iscr.'t?fnamBIIgpecified meaning in an image, although multiple featuresmap
shape by multiple VIews, ! 1on WIthin MUy e involved. Thus, their attention weights are computed at

tlgloe|ixlevvssirfilzggrrengaa;e%gitr? t?sea?slgb:rlnfﬁztugg ttgr;uglxn; e part level. To represent the characteristics of eachesha
P 9- Y P 9 poy ggteg class at each step of decoder, we propose a novel attention

multiple views to learn local features for Shape.segmmaﬂmechanism which is different from the one employed in [35],
or correspondence [4]. To employ more content information [37]

each view, Li et al. [30] concatenated all view features ferh
archical abstraction in the CNN-based model. By decomgosin

a view sequence into a set of view pairs, Johns et al. [31] _ ) . SEQVIEWSZSEQLABE_LS_ ) _
classified each view pair independently, and then, learned this section, SeqViews2SeqLabels is introduced in detai
an object classifier by weighting the contribution of eachi'st: we provide an overview and then describe the key
view pair, which allowed 3D shape recognition over arbjtrar€lements, including capturing sequential views, view st
camera trajectories. To perform pooling more efficientipngy €xtraction, the encoder-RNN, the decoder-RNN, and the at-
et al. [8] proposed dominant set clustering to cluster vieW@ntion mechanism in the subsequent five subsections.
token form each shape, where pooling is performed in each

cluster. A. Overview

Although pooling resolves the effect of rotation of 3D The framework of SeqViews2SeqLabels is illustrated in
shapes, it still suffers from two kinds of information lossFig. 1, where SeqViews2SeqLabels consists of the encoder-
i.e., the content information of almost all views and th&NN and the decoder-RNN as shown in Fig. 1 (b). First, a
spatial information among the views. The spatial informati view sequence’ is captured on a circle around each 3D shape
between pairwise views is also disregarded by the view pair in a set of M 3D shapes, wheré € [1, M], as shown in
decomposition [31]. In [30], Li et al. compensated these tweig. 1 (a). The view sequenag is composed of/ sequential

kinds of loss by concatenation of all views, however, it igiews v, such thatv* = [vf,...,v}] andj € [1,V]. Then,

sensitive to the first view position. the global featureof m?, namely F?, is learned fromv? by

To resolve the aforementioned issues, SeqViews2SegLaklibks encoder-RNN. Finally, the decoder-RNN classifigsinto
is proposed to learn 3D features via aggregating sequentiak of C shape classes based on the global feaRtireearned
views by RNN. The RNN-based aggregation not only préyy the encoder-RNN.
serves the content information of all views and the spatial To learn F?, the encoder-RNN not only aggregates the
information among the views, but also becomes capable adntent information of each single viem;i in v, but also
learning the semantics of view sequence, which is robust ficeserves the spatial information between successivesyiew

the first view position. such asv andv!, . This enables the learning of semantics

Light Field Descriptor (LFD) [25] is the pioneer view-base
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(a) Sequential view capture (b) SeqViews2SeqLabels

Fig. 1. The framework of SeqViews2SeqgLabels. The sequeritas are first captured around each up-oriented 3D shapesdircle in (a). Then, they are
learned by SeqViews2SeqLabels which consists of encobiéi-Bnd decoder-RNN.

of the view sequence’, which makes SeqViews2SeqLabelgViews2SeqLabels for higher classification accuracy than
robust to the first view position with the assistance of thmerely using the encoder-decoder structure. The attention
attention mechanism introduced later. The content inftiona mechanism is implemented by weighting the low-level featur

of v} is described by its low-level featurgf;, which is f; of all sequential views for each shape class. That is, the
extracted by the fined-tuned VGG19 [38] deep neural networkews that are distinctive to one shape class are emphasized

In addition, the decoder-RNN classifies shapeinto one and otherwise the views are suppressed. This ability ofrebse
of C shape classes by predictinglabel sequencé’ based ing all views for each sequential label prediction also sdssi
on F' learned by the encoder-RNN. The label sequdids the encoder-RNN to learn the semantic meaning of the view
composed of”' sequential labelg?, such that’ = [I¢,...,I¢], sequence by dramatically reducing the effect of choosieg th
wherec € [1,C], I € {0,1} and Y.< 1" = 1. ¢ = 1 first view position.
indicates the positive prediction of theth label form?, which
meansm' is classified into the-th shape class, whil& = 0
indicates the negative prediction of theh label form?.

We employ sequential labels itf to provide more and
finer discriminative information among different shapesskzs.  The sequential views are captured around each 3D shape on
Sequential labels change the traditional classificatisi & a circle, which forms a view sequence, as shown in Fig. 1 (a).
learning a mapping from a sequence (sequential views) torae sequential views are formed by views in order which
scalar (shape class index) to an extended mapping of learnéme uniformly distributed on the circle. Here, the camenas a
a mapping from a sequence (sequential views) to another skevated30° from the ground plane, pointing to the centroid
quence (sequential labels). This extended mapping eftdgti of the 3D shape. The first view in the view sequence is taken
alleviates the overfitting problem inherent in training end from a fixed position that can be randomly selected on the
a limited number of 3D shapes. The prediction/bfis only circle. Then, the subsequent views are taken with an angle
conducted at the-th step of the decoder-RNN. The predictionnterval of 360°/V in a consistent sequential direction. The
of sequential labels in a step-by-step manner enables seguential direction is determined by the right hand rdiaf t
comprehensively refer to view aggregation at each stepeof fis, it is along the direction of wrapping one’s right hand whe
encoder-RNN, the characteristics of forward (from thth to the thumb is in the same direction of the up-orientation, as
the (¢ — 1)-th) shape classes, the characteristics of backwatdmonstrated by the green arrow surrounding the 3D shape in
(from the (¢ 4+ 1)-th to theC-th) shape classes, and the labdFig. 1 (a).
prediction;_, at the previougc — 1)-th step. Note that the  Different from traditional multiple view capture [5], [25]
order of shape classes to be predicted in the decoder-RN& dgee sequential views are captured on a circle rather than a
not affect the discriminative ability of SeqViews2Seqlehl unit sphere. Although the sequential views cannot fullyezov
because the prediction of each sequential label is alwayg top or the bottom of 3D shapes, the low-level features
conducted based on the characteristics of all shape classesf sequential views can be more efficiently aggregated while

More importantly, we also introduce an attention mectpreserving the spatial information among the views for 3D
anism to further increase the discriminative ability of Seglobal feature learning.

B. Capturing sequential views
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C. Low-level view feature extraction whereReLU (-) is a non-linear function defined asax(0, -),
andW¢ are learnable parametefs; required to calculate

is initialized to all zeros.

In addition, an output is obtained at each step of the eneoder
RNN. The output at the j-th step, o, is provided to the

dS coder-RNN for the prediction of sequential labels, afid

a .

n be calculated as in Eq. (2),

The low-level feature of each single view can be extractc%ltie
through fine-tuning existing deep neural networks, such as
VGG19 [38] and Alexnet [39]. In our work, we employ
VGG19 to extract the low-level featqu’f of each single view
vj in v’, since VGG19 and its pre-trained parameters are e
to access. VGG19 is originally trained under the ImageNg
benchmark for large scale image classification [38].

VGG19 is formed by 19 weight layers including 16 convo-

lutional layers and 3 fully connected layers. With a softmaghere 0 andbe are learnable weight parameters. Moreover,
layer, VGG19 is capable of classifying images belonging e higden state at the last siéfs,, describesn’ as its global

1000 categori.es. In our work, the VGiGlgl pre-trained undpéatureFi after aggregating all sequential views iy, such
ImageNet is fine-tuned by all sequential views of 3D shapgs,; pi — he,.

in the training set, where each view is classified into one of
C shape classes by another softmax layer. When a vjeim
forwarded through the fine-tuned VGG19, its low-level featu E. Decoder-RNN

fj? is extracted as a 4096 dimensional vector from the last fullyyerview. Similar to the encoder-RNN, the decoder-RNN is
connected layer of the VGG19. also implemented by an RNN, which leads to the encoder-
decoder structure of SeqViews2SeqLabels. According to the
global featureF® of m' provided by the encoder-RNN, the
decoder-RNN aims to classify.’ into one ofC' shape classes

To benefit from the powerful ability of learning sequentiaby predicting the sequential labels in 1* step by step, as
data, SeqViews2SeqLabels employs an RNN as the encodéhgwn in Fig. 1 (b).
procedure to learn 3D global featu#€’. The encoder-RNN  Based on sequential labels, the decoder-RNN regards the
learns F* via aggregatingf} of all sequential viewsv;i in  shape classification as finding a mapping from a view sequence
the view sequence’ while preserving the spatial informationw® to a label sequendé, which is different from the traditional
among them. mapping fromwv? to a shape class index. This facilities the
decoder-RNN to learn from more and finer discriminative
information among different shape classes, which effebtiv
alleviates overfitting inherent in training a powerful RNN-
based model under a limited number of 3D shapes.

The decoder-RNN predicts one labgl in 12 at eachc-
th step. The prediction of. indicates whether the shape’
belongs to the-th shape class. The positive predictiéhn 1)
indicates thatn’ belongs to the=-th shape class. Otherwise,
the negative prediction{( = 0) is provided.
Structure. The details of the decoder-RNN are briefly il-
lustrated in Fig. 3, where only two steps for predicting the
Fig. 2. The structure of the encoder-RNN aggregates loetleatures of Sequential labels of “Airplane” and “Bathtub” shape clasaee
views while preserving the spatial information among them. demonstrated. Generally, each sequential I&bé predicted

according to several aspects of information, such as the-vie

The general structure of the encoder-RNN for aggregating el information §.) combined by the attention mechanism
Sequential views in® is illustrated in F|g 2, where the RNN at the current step, the informatiokc(_l) of the Sequentia'
cell shown as a blue square at each step can be a LgBe| predicted at the previous step, the characterishifs,)
Short Term Memory (LSTM) [14] or Gated Recurrent Unibf forward shape classes, and the characteristics of badkwa
(GRU) [40]. The encoder-RNN learns from the sequentighape classes.

views vj in v* step-by-step, where all low-level features ofrhe hidden state at the current step.For the prediction of
vj, .. [fi, ..., £}, -, fy/], are sequentially aggregated whilgapel;: at thec-th step the hidden statat thec-th step,hd, is
preserving the spatial information among them. first computed, where the superscrigtis the abbreviation of
An f; is conveyed to the encoder-RNN as the input at thRe decoder. To compuik?, the hidden state at the previous
J-th step. At thej-th step, ahidden stateh plays the role of steph? | and the embedding._; of label I:_, predicted
“memory” of the encoder-RNN, where the superscripts the at the previous step are employell? ; comprehensively
abbreviation of the encoder. This is becadéiseis calculated encodes the characteristics of forward shape classese whil

based on the hidden stake_, at the previoug — 1-th step k,__, especially highlights the label prediction at the previous
and the inputf; at the current step, as defined in Eq. (1), step, as defined as follows,

S = O°hS + b°. )

D. Encoder-RNN

h$ = ReLU(U®f; + W°hS_,), (1) he = ReLU(U%,._; + WhZ_)). ()
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@ 0 ]i o ol ]i predictions ofl! is supposed to be one, whdrieonly equals
5~ Yes/Nole 35~ Yeg/Nols to either one or zero to indicate whether shape belongs

S to the c-th shape class. Thus, the probability of positive
prediction of i can be obviously computed by a sigmoid
function according to the prediction vectar,, while the
probability of negative prediction of. is the supplementary.
However, s, merely considers the characteristics of forward
shape classes, which means the sigmoid function can not
observe the characteristics of backward shape classes. As a
result, there is a loss of discriminative information among
. shape classes when predicting sequential labels, reguitin
------ Fl low classification accuracy.

To resolve this issue, the characteristics of all shapeetas
are comprehensively considered when predicting each label
at each step by a softmax layer, as shown in Fig. 3. The
e i [ ereee {/ tar softmax layer captures more discriminative informatioroam
different shape classes via minimizing the probabilitieat t
Fig. 3. We illustrate the structure of the decoder-RNN, wehenly two steps & Shape belongs to wrong shape classes and maximizing
of the decoder-RNN for predicting the sequential labels Aifplane” and the probabilities that it belongs to the correct shape class
“Bathtub” shape classes are shown. in the training procedure. More importantly, the softmax

layer also efficiently employs the characteristics of baatdv
whereU¢ and W are learnable parameters. shape classe_s,_ which overcomes the disadvantage that only

Note that, for the prediction of the first labié}, the hidden the characteristics of forward shape classes are encodbd as

i d pr
state at the previous step is replaced by the global fedfire Nidden statéx;_, for the c-th label prediction. =
of m‘. Moreover, a special embeddinkg,.., is employed to Specifically, the softmax layer regards the positive and

indicate the start of the prediction of sequential labelser, N€9ativé label predictions of each shape class as two inde-

Eq. (3) is rewritten to calculate the hidden state at the firBEndent categories, that is, the sum of probabilities owéhn b
steph?, as defined below, positive label prediction and negative label predictiom@

guaranteed to be one. Thus, there are totally categories
hd = ReLU (U0 + WEF), (4) for the _softmax Iaye_r to classify at each step of pr_e_d_icting

" sequential labels. With the softmax layer, the probabdgitbf
The prediction vector. The prediction of sequential lab&l positive and negative predictions Kifare respectively defined
also considers the view-level information at each step ef tihased on the prediction vecter as below,
encoder-RNN, which is represented by #teention vectog..
g. is obtained through the attention mechanism as detailed in Yo = Ws, + b, (7)
the following subsection. We expect sequential latjetan
be predicted through simultaneously observing the viexgtle

information and the class-level information. Thereforiee t i i 1 i p exp(yl)
prediction ofl! is carried out based ongrediction vectors, plle =10, 12, o L] ") = S Y exp(yd)’ (8)
that is formed by the concatenation of the attention vegtor a€[1,0]b€{0,1}
and the characteristics of forward shape clagggsas defined
below, - oo - ; exp(y?)
IL=0|[11,0, ... li_4],v") = 9
. ] ] p( c |[ 19925 =% 571]5 ) Z Z exp(yg)’ ( )
s. = O%g. hS] + b%, (5) a€[1,C) be{0,1}

where O? and b? are learnable parameters. To represent théherey. = [y, vy, ..., 0%, ..., v2, &), a € [1,C], andb €

characteristic of each shape class at each step, the viel-1g0, 1}, W andb are learnable parameters in the softmax layer.

information is not directly involved in producing the classFinally, a joint probability is defined over the sequentéiéls

level information as in other methods [35], [37]. This desigl’ in I* by sequentially conditional probabilities as follows,

makes the decoder-RNN learn the distribution of sequential

labels mainly based on the characteristics of shape classes p(l") = H p(L| (18,015, . 18], 0", (10)
Similar to rewriting Eq. (3) as Eq. (4), Eq. (5) can be c€[1,0]

rewrittern as Eq. (6) for the prediction of the first lalbgl where the label sequenée= [(i, ... 1i] is for the i-th shape

—_ 0d d d m®. It means to evaluate the probability &f to be inferred
s1=0%g1 hi] + % ©)  pased on the given view sequence
Sequential label prediction. In our scenario, the-th label Objective function. Based on Eq. (10), we want the decoder-
I! can only be predicted at theth step of the decoder-RNN. RNN to predict the sequential labels as accurately as gessib
Thus, the sum of probabilities over both positive and nggatiThus, the objective function of SeqViews2SeglLabels is to
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maximize the log-likelihood of joint probabilities of prieting IV. EXPERIMENTAL SETUP

l¢ in I* for all M shapes in the training set, as defined below, |, this section, different shape benchmarks and performanc
1 4 measures for global shape classification and retrieval @re r

max —r Z logp(1"). (11) spectively described to evaluate the 3D global featurenésh
ie[1,M] by SeqViews2SeqgLabels. In addition, the setup of parameter

A testing shape is classified according ta(li — involved in SeqViews2SeqLabels is also discussed.

1[4, 15, ..., 1L ], v"), such that the shape class that the test-

ing shape belongs to is determined bygmaz. p(ii = A. Benchmarks and evaluations

1[13,15,....,1i_1],v%). In the next subsection, the attention The global shape classification and retrieval experiments
mechanism is introduced in detail, which describes how tre conducted under three large-scale 3D shape benchmarks,

compute the attention vectgt.. including ModelNet40 [20], ModelNet10 [20] and ShapeNetv-
Core55 [42].
E. Attention mechanism ModelNet40 and ModelNet10 are two subsets of ModelNet

) . , which contains 151,128 3D shapes categorized into 660 shape
For each sequential label prediction, the attention mec asses. As smaller subsets, ModelNet40 is formed by 4Geshap
nism determines WhiCh. vi_ews should be_z paid more attentiofl,sqes with a total of 12,311 3D shapes, while ModelNet10
for more accurate prediction of sequential labels. consists of 4,899 3D shapes split into 10 shape classes. The
To predict thec-th label [; for shapem’, the degree yining and testing sets of ModelNet40 consist of 9,843
of attention paid to thej-th view v; is measured bythe 5.4 5 468 shapes, respectively. In addition, the training a
attention weighta ;, where all attention weights form anigqting sets of ModelNet10 consist of 3,991 and 908 shapes,
attgntlorj weight vectory, = [ac,...,ag ], 7 € [L V] and  respectively. ShapeNetCore55 is a subset of the ShapeNet
> jm1 @y = L If Ig = 1is finally predicted, a higher value gataset, and it contains 51,190 3D shapes of 55 shape classes
of a; ; means that the shape appearance in jite view  |n 3D shape classification experiments, the metrics em-
v’ is more distinctive to the characteristics of th¢h shape ployed for evaluating the performance of different methods
class, and maybe, no other views are needed for the positivelude average instance accura@ndaverage class accura-
prediction of ;. Otherwise, ifl; = 0 is finally predicted, a cy. In 3D shape retrieval experimentsgan Average Precision
higher value ofa; ; means that the shape appearance in th@AP), Precision and RecallPR) curvesprecision(P), recall
J-th view v is more different from the characteristics of thgR), F1 score (F1) and Normalized Discounted Cumulative
c-th shape class, and maybe, no other views are neededdeiin (NDCG) are presented to compare the performances of
the negative prediction of;. Thus, the attention vectay. different methods under different benchmarks.
is computed via weighting the outptﬂ; at each step of the

encoder-RNN by the attention weights ;, defined as, B. The setup of parameters

Voo In this subsection, the key parameters involved in Se-
ge = Z . ;0% (12) qViews2SeqLabels are set by exploring their impacts on the
j=1 performance of SeqViews2SeqLabels in shape classification

Inspired by the attention mechanism for machine transi§XPeriments under ModelNet40. The average instance accura
tion [41], we compute the attention Weighf;y]- in a similar CY is used as .the metric fo_r the performance comparison, and
way. ol ; measures the similarity between the viey and the GRU cell is employed in SeqViews2SeqgLabels.
the c-th shape class, which indicates the distinctiveness; of The key parameters include the dimension of hidden state,
to the -th shape class. Different from the attention involvelile €mbedding dimension of sequential labels, the learning
in [35], [37], the attention weights are computed accordir{&te' and the number of views in the view sequence captured
to the hidden state at the current step rather than the hid@kfund each 3D shape.

state at the previous step. Therefore, the computatias, gf Tfheh dimens(ijon of the dhidr?end sta(tje.The hiﬂden shtates
is implemented by a single-layer neural network involvisig of the encoder-RNN and the decoder-RNN have the same

d fi foll dimension in SeqViews2SegLabels. In this experiment, the
andhe, as defined as follows, results obtained with different candidate dimensions dtlbn

; ; state are compared as shown in Table I, where the dimension of
i =ax tanh(Yo! + Zh?), (13) pare : :
’J J label embedding is set to 256, and the learning rate is 0.0001
. exp(BL) " TABLE |
c,j = ZV Bi ’ ( ) THE DIMENSION OF HIDDEN STATE COMPARISON UNDERMODELNET40,
g=1 exp( c7q) EMBEDDING=256,RATE=0.0001.
where the vectorz, and the matriceY¥ andZ are learnable Hidden staie dmension 64 158 T 556 | 512
parameters of SeqViews2SeqgLabels for learning the abtenti Accuracy(%) 92.01 | 93.11 | 92.83 | 92.95

weight vector a’. These parameters are optimized along
with other parameters involved in SeqViews2SeglLabelsén th The candidate dimensions of hidden state form a set
learning procedure via maximizing Eq. (11). {64,128,256,512}. From the comparison shown in Table I,
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all results obtained with these candidate dimensions ang véidden state and the embedding dimension of sequentidtlabe
good, and the best result is achieved with 128. Thus, thee performance of SeqViews2SeqLabels cannot be further
dimension of the hidden state is set to 128 in the followinignproved by increasing the number of views, as indicated by
experiments. the result with 24 views. The same phenomenon is observed
The embedding dimension of sequential labelde conduct under ModelNet10 as shown in Table V, where the best result
a comparison of different embedding dimensions of segakentis also achieved with 12 views. The reason is analysed in the
labels using 128 dimensional hidden states and a learntag rillowing paragraph.
of 0.0001. Although more sequential views in view sequences provide
TABLE I more information of each shape, it would become more
THE DIMENSION OF LABEL EMBEDDING COMPARISON UNDER difficult to aggregate more views fo.r effective featur<=T rea_g.
MODELNET40, HIDDEN=128,RATE=0.0001. In other words, the ability of learning long sequential diata
still limited even if LSTM and GRU are specially designed to
learn from long sequences. In the following experiments, 12
views in the view sequences captured around each shape are

The results with candidate embedding dimensiof§ed to learn global features.
{64, 128,256,512} of sequential labels are compared in

Label embedding dimensiofn 64 128 256 512
Accuracy(%) 92541 9291 93.11 | 92.99

Table 1. The best result is achieved with 256, which is used TABLE V
. . . THE NUMBER OF VIEWS UNDERMODELNET10,HIDDEN=128,
in the following experiments. _ EMBEDDING=256,RATE=0.0002.
The former two comparisons also imply that the perfor-
mance of SeqViews2SegLabels can not be further improved by View number | 3 6 12 24
Accuracy(%) | 93.94 | 94.27 | 94.71 | 94.05

increasing the dimension of hidden states and the embedding
dimension of sequential labels under ModelNet40. However,
we believe the learning ability of SeqViews2SeqLabels doul
be increased via enlarging the dimension of the hidden state
and the embedding dimension of sequential labels if moreln this section, the performance of SeqViews2SeqgLabels is
training samples were available. evaluated against the state-of-the-art methods in shassicl
The learning rate. The learning rate affects the optimizatiorfication and shape retrieval under ModelNet40, ModelNet10
of parameters in SeqViews2SegLabels. In this experimeat, tand ShapeNetCore55, respectively. For fair comparisam, th
results obtained with different learning rates are comgha#s results obtained by the state-of-the-art methods are ctedpu
shown in Table Ill, the result obtained with learning rate drom single modality, such as image, voxel or point cloud.
0.0002 is better than the ones obtained in the former experi-
ments, which achieves an accuracy96f31%. This compari- e
son is conducted with the 128 dimensional hidden state and tAﬁ Shape classification o

256 dimensional embedding of sequential labels, respytiv ModelNet40. Under ModelNet40 for shape classification, the

In the following experiments, SeqViews2SeqLabels is tdin COMParison is shown in Table VI, where the modality and

V. RESULTS AND ANALYSIS

with the learning rate of 0.0002. numbers of views are also presented. The evaluation metrics
both average class precision and average instance precisio
TABLE IlI are presented in the table if they are reported in the origina

THE LEARNING RATE COMPARISON UNDERMODELNET40,HIDDEN=128, paper_

EMBEDDING=256. Using views captured from 3D shapes in the training set
Learning rate] 0.00005 | 0.0001 | 0.0002 | 0.0004 of ModelNet40, VGG is fine-tuned via classifying each single
Accuracy(%) | 92.63 | 93.11 | 93.31 | 92.99 view into one of 40 shape classes. The accuracy of single
Th b £ Vi Th b ¢ Vi .. view classification i$89.47%, as the result named as “VGG

€ number of views. Theé number of Views In view ModelNet40)". By voting the classification of single view

sequence is also a factor of affecting the performa_nce _fer all views in each view sequence, namely “VGG (Voting)”,
SquewsZSeqLabels. In the former experiments, 12 views average instance accuracy of classifying 3D shapes is
VIew sequence are qaptured around each 3[.) shape_, Whﬁﬁ. 0%. Fine-tuning is important to extract low-level features
'S employed for Iearm.ng global features. In this eXpermen,c ies by VGG. This is because VGG is pre-trained by color
different numbers of views are compared to explore the effgg, o5 from ImageNet while the views are captured without

of number of views. colors. Thus, the results listed as “Ours (No finetune)” are

TABLE IV not as good as our best results described in the following
THE NUMBER OF VIEWS UNDERMODELNET40, HIDDEN=128, paragraph, where SeqViews2SeqLabels is trained under low-
EMBEDDING=256,RATE=0.0002. level features obtained from no fine-tuned VGG.
View number T3 5 15 57 With SquiewsZSeqLabels employing GRU cell, our results
Accuracy(%) | 92.71 | 92.78 | 93.31 | 92.46 named as “Ours” achiev&l.12% and 93.31%, as shown by

the bold numbers. Our results are the best results among all
In the comparison shown in Table IV, the best result ieported results in terms of both average class accuracy and
obtained with 12 views. Similar to the effect of dimension ofverage instance accuracy. For fair comparison, the result
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VRN [43] is presented with a single CNN, where twice moran most of the views and the spatial information among the
views than ours are employed, and the result of RotationNaéws, these results are not better than ours.

[29] is presented with views taken by the default camera
system orientation which keeps identical with other method
In addition, another result of ours listed as “Oursl” ach&v CLASSIFICATION COMPARISON UNDERMODELNET40,HIDDEN=128,

91.24% and 93.15%, which is also a state-of-the-art result.

TABLE VI

EMBEDDING=256,RATE=0.0002.

The comparison between “Ours” and “Oursl” implies that Methods Modality | Views | Class(%) | Instance(%)
the unbalanced number of shapes in each shape class makes SHD Mesh - 68.23 -
; LFD Image 10 75.47 -
average class accuracy and average instance accuracy ncg,tyrmi HoG-LFD Image 20 g, 905
positively correlated. Fisher vector [3] - 12 84.8 -
SeqViews2SegLabels is able to learn the semantics |of3DShapeNets [20] | \Voxel 12 77.32 -
sequential views via aggregating views by the encoder—RNNGeotsﬁ:tF%f’?rggég][ZB] :m:gg : 18 :
which makes SeqViews2SeqLabels insensitive to the first vie VoxNet [44] Voxel - 83.0 B
position. To verify this point, the result named as “Ourg VRN [43] Voxel 24 - 91.33
(Start)” is obtained via training SeqViews2SeqLabels by s T_L':,\Fl’é\'txogf’% 61 voxel ) gas :
quential views with random first view position. Although the  3pgan [23] Voxel - 83.3 B
first view position is not fixed for training, the result obstad PointNet [47] Point 1 86.2 89.2
as “Ours (Start)” is still comparable to our best result. PointNet++ [48] Point 1 - 9L.9
" . . . FoldingNet [49] Point 1 - 88.4
In addition, the effect of different kinds of RNN cells is Octree [24] voxel 12 90.6 -
also explored in the comparison. The result listed as “Ours PANORAMA [27] Image 6 90.70 -
(LSTM)” is obtained by replacing GRU with LSTM in Se- P"’gl"‘lz"?e[s[]?'l] :ngg - N7 :
qViews2SeqLabels. The effect of different kinds of RNN selll  pominant set [g] Image 12 N 92.2
is insignificant, as implied by the comparable result to astb Su-MVCNN (3] Image 80 90.1 -
result MVCNN [13] Image 20 89.7 92.0
: . . . N leIVCNN—Sphere [13]| \Voxel 20 86.6 89.5
The effect of the attention mechanism is also highlighted RrotationNet [29] Image 12 - 90.65
in the comparison. The result listed as “Ours (No attention SO-Net [50] Point 1 87.3 90.9
is obtained based on SeqViews2SeqLabels without attentjon_Slicevoxel [32] Voxel 1 - 85.73
. . VGG(ModelNet40) Image 1 - 89.47
vector for sequential Iapels predlcuqn. The _degeneraiedlr VGG(Voting) Image 12 90.37 92.50
implies that the attention mechanism is important for the Ours Image 12 91.12 93.31
i~ ; ; Oursl Image 12 91.38 93.07
predlctlon o.f sequential labels, especially when seqaént Ours (No finetune) | Image 1 8863 o157
views are with large number and complex to understand. ours (Start) Image 12 91.10 92.95
The result listed as “Ours (No decoder)” emphasizes the Ours (LSTM) Image 12 91.14 92.99
importance of sequential labels. “Ours (No decoder)” is im- Qurs (No attention) | Image | 12 88.99 9113
. . Ours (No decoder) Image 12 90.50 92.50
plemented by replacing the decoder-RNN with a softmax oyrs (sigmoid) Image 12 63.79 77.63
classifier. The degenerated result shows that, by learningOurs (Maxpooling) | Image 12 89.77 91.53
and predicting labels in a sequential way, the decoder-RNNOU's (Meanpooling) | Image | 12 89.97 91.57

successively captures more discriminative informatioragn .
different shape classes than the softmax classifier. StiguerModelNet10. The performance of SeqViews2SeqLabels is
labels effectively alleviate overfitting, which increastee further evaluated under ModelNet10 for shape classifinatio

classification accuracy. The comparison is shown in Table VII.

In addition, we also conduct an experiment to verify the The VGG fine-tuned by the views from ModelNet40 is first
effectiveness of the softmax layer for sequential labeks prused to extract the low-level features of sequential viewskw
diction at each step of the decoder-RNN. By replacing thge captured from the 3D shapes in ModelNet10.
softmax layer with a sigmoid function, the result listed as As the results listed as “Ours” and “Ours (LSTM)” shown,
“Ours (Sigmoid)” is obtained by minimizing the least squaareSeqViews2SeqLabels achieves the best results under Model-
error of predicted sequential labels. However, the resstikd Net10. Comparing with the GRU cell, LSTM cell performs
as “Ours (Sigmoid)” is not satisfactory. This is because tHetter under ModelNet10, where average class accuracy and
characteristics of backward shape classes cannot be edsefverage instance accuracy achieve up4®0% and94.82%,
for sequential labels prediction by the sigmoid functioeath respectively.
step. The effects of attention mechanism and sequential labels ar

Finally, we highlight our novel view aggregation by comalso highlighted in the comparison. Although both the rissul
paring it with widely used max pooling and mean poolindisted as “Ours (No attention)” and “Ours (No decoder)” are
To conduct a fair comparison, we employ the same low-leveétter than the ones of other state-of-the-art methodsy, the
view features as the ones (“VGG (ModelNet40)”) involvedre degenerated compared with “Ours” or “Ours (LSTM)"
in our best results of “Ours”. Moreover, the structure oflue to the lack of attention mechanism and sequential labels
MVCNN is trained with max pooling and mean pooling refespectively.
spectively, as shown by the results of “Ours(Maxpoolingida  With the low-level features provided by VGG which is fine-
“Ours(Meanpooling)”. Due to the loss of content informatiotuned under the views captured from the shapes in Model-
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Net10, we explore whether better results could be achieved. TABLE VIII
As the result listed as “VGG (ModelNeth)”, the accuracy O@LASSIFICATION COMPARISON UNDERSHAPENETCORES5,HIDDEN=128,
classifying single view into one of 10 shape classeXlig7%. EMBEDDING=256,RATE=0.0002.

By voting the classification of single view over all sequehti Methods Modality | Views | Class(%)]| Instance(%)
views in each view sequence, the accuracy of classifyi 1gVGG\(/SGh§R?'\t{et(;OFeSS) :mage 112 Lea gg-gg

. . . w . ” foting mage . .
shapes is achieved @3.83%, as listed as “VGG (Voting)”. ours Image | 12 7481 85.47
Although the results of “Oursl” and “Oursl (LSTM)” are Ours (512) Image 12 75.11 85.10
slightly degenerated compared with the results of “Ours! an VGG& ézqaR?N_et(iore% :mage é 603 g?-gi
u » ; _Aftha loting mage . .
Ours (LSTM)”, they are still the state-of-the-art reswdtsong Oursi Image 8 76.91 86.61
all reported results. Oursl (512) Image 8 76.84 85.94

Under ModelNet10, we repeat the experiments of “Ours
(Start)”, “Ours(Maxpooling)” and “Ours(Meanpooling)” ne
ducted under ModelNet40. As the results shown in Table VHQurs1” which are obtained by low-level view features from

the same phenomenons are observed. “VGG (ShapeNetCore55)” and “VGG1 (ShapeNetCore55)”,
respectively. The comparison between these results implie
TABLE VII that the color is slightly helpful to increase the performan
CLASS'F'CAT'ON‘E““)A“E’;‘Egg'lf‘gﬂ;g‘gii'\fEc’_%ES’a‘gglo~H'DDEN=128' of SeqViews2SeqLabels in terms of average class accuracy,
' ' ' from 74.81% and 76.91%. We also try to explore whether
Methods Modality | Views | Class(%)| Instance(%) the performance of SeqViews2SeqLabels could be improved
EEDD mesﬂ o ;g-;g - via increasing the dimension of hidden state, as the results
es . - “ ” “ ” H
3DShapeNets [20] | Voxel 12 83.54 . of “Ours (512)" and "Ours1 (512)". However, the results with
DeepPano [6] Image 1 85.5 - higher dimension of hidden states are comparable to “Ours” o
Geometry image [28]  Image 1 88.4 - “Oursl” respectively, which implies that the 128 dimensibn
VoxNet [44] Image - 92.0 - hidd ffici | dtol f h dip
VRN [43] Voxel 24 _ 03.8 idden states are sufficiently good to learn from shapedtor t
3DGAN [23] Voxel - 91.0 - scale of ShapeNetCore55.
ORION [51] Voxel - 93.8 -
FoldingNet [49] Point 1 - 94.4
PANORAMA [27] Image 6 91.12 -
Pairwise [31] Image 12 02.8 . B. The effect of shape class order
GIFT [5] Image 64 91.5 - : :
RotationNet [29] Image 12 B 93.84 In this subsection, we explore the gffect of shape_qlas_srorde
3DDescriptorNet [52]|  Voxel - - 92.4 under ModelNet40 and ModelNet10 in shape classification. In
SISO-\'/\let |[5[g]2] \F/’Om} i 93.9 gfjo the experiments above, we use the default shape class order
IceVvoxe 0Xe - . . . f
Ours mage v 9456 9471 provided by the be_nchmark, wh!Ie we emplpy randomized
Ours (LSTM) Image 12 94.80 94.82 shape class order in this experiment. Specifically, we ran-
Ours ((No %ttentcijong Image 12 93.15 93.17 domize shape class order 40 times under each benchmark.
Ours (No decoder Image 12 93.75 93.83 ; ;
ours (Start) Image 12 94 55 94.60 Usmg _eac_h ran(_jomlzed shape class oider, V,YE_' repeat the shape
Ours (Maxpooling) Image 12 92.00 92.07 classification with the parameters of “Ours” in Table VI or
Ours (Meanpooling) | Image 12 93.12 93.17 Table VII. Finally, we compute the mean, standard deviation
VGG (ModelNet10) Image 1 - 91.87 ; ;
VGG (Voting) Image i 93.83 93.83 gnd maximum over the 40 groups of results in terms of average
Oursl Image 12 94.51 94.60 instance accuracy and average class accuracy, as shown in
Oursl (LSTM) Image 12 94.12 94.27 Table IX.
ShapeNetCore55.In this experiment, the performance of TABLE IX

SeqViews2SegLabels is evaluated under ShapeNetCoreb5. FO THE EFFECT OF SHAPE CLASS ORDER UNDERIODELNET40AND
each 3D shape, 12 sequential views rendered without colors MODELNET10,HIDDEN=128,EMBEDDING=256 ,RATE=0.0002.

are used to train Seq\ﬁe_wsZ_SeqLabeIs. In a_ddition, we also Metrics (%) ModelNet0 | ModelNetio

explore whether sequential views rendered with colors @n b Instance mean 93.20 9452

used to improve the performance of SeqViews2SegLabels. The Instance std 0.09 0.11
tial views with colors are downloaded from the web Class mean oL02 A

sequential views colors are downloaded from the we Class std 014 012

page of ShapeNet, however, there are only 8 sequential views | Ours(ClassMax)-Instance  93.40 94.71

in each view sequence. The results are shown in Table VIII. Ours(ClassMax)-Class | 91.10 94.65

In Table VIII, the results named as “VGG (ShapeNet-

Coreb5)" and “VGG1 (ShapeNetCore55)” are obtained via The statistic results show that the effect of shape class
fine-tuning VGG by the views without colors and the viewsrder is subtle. Under both benchmarks, the mean values are
with colors, respectively, where the results obtained biyngo high, and the standard deviations are quite small, in terins o
are correspondingly listed as “VGG (Voting)” and “VGG1both average instance accuracy and average class acduracy.
(Voting)”. Because of the highly unbalanced number of sBapaddition, we even obtain a higher instance accuracy than our
in each shape class, we only present our best resultsbist results with default shape class order under Modet\et4
terms of average class accuracy, as listed as “Ours” aasl shown by “Ours(ClassMax)-Instance”.
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C. Attention visualization shape retrieval, four experiments are conducted under each
benchmark. The four experiments are named as “Test-Test”,
U - e e— BN smmmmom | “Test-Train”, “Train-Train”, and “All-All", indicating which
data set the query and retrieved shapes come from, respec-
tively. For example, “Test-Train” indicates that the shajre
.« the testing set are used as query for shape retrieval from the
training set.

The comparison between SeqViews2SeglLabels and the
state-of-the-art methods is shown in terms of mAP in Ta-
ble X, where the retrieval range is also explained. Under
ModelNet40, the mAPs obtained by SeqViews2SegLabels are
the best, which achieve$9.00% and 96.73% in the “Test-
Test” and “All-All” experiments, respectively, as shown by

() E— _I the bold numbers. Under ModelNet10, the mAPs of Se-

0.6

0.4

gViews2SegLabels achiew#®.55% and97.85% in the “Test-
Test” and “All-All” experiments, respectively. The corpemnd-
ing PR curves of our results obtained under ModelNet40 and
ModelNet10 are shown in Fig. 5 (a) and (b), respectively,
where the PR curves of our results show a high performance
( of SeqViews2SeqLabels.
We believe our results are also the best as shown in bold,
Fig. 4. The attention weights learned by SeqViews2Seqkafied two  even if GIFT obtains a higher mAP. This is because, the
f;rsprl,zgteije@?d one bathiub from ModelNet40, as shown in B)atd () gataset used by GIFT is formed by randomly selecting 100
shapes from each shape category, which is much simpler than
In this subsection, the attention learned bthe whole benchmark that we used. To verify this point, we
SeqViews2SeqLabels under ModelNet40 is visualized &mploy the same low-level view features to compare with
analyse how SeqViews2SeglLabels recognizes 3D shapes@¥kT (64 clusters) under the whole ModelNet40 and Model-
understanding sequential views. As shown in Fig. 4, thidetl0, as shown by “GIFT1". In addition, for better analysis
attention weight vectors{a’} for all shape classes overof SeqViews2SegLabels in shape retrieval, we also present
sequential views i’ are visualized as a matrix, such aghe retrieval results with the features learned by the nésia
the ones of two airplanes in Fig. 4 (a), (b) and the one of SeqViews2SeqgLabels compared in the shape classification
a bathtub in Fig. 4 (c), where red represents high attentierperiments, such as “Ours(LSTM)”, “Ours(Start)”,“OuMs(
weight and eacha! is the c-th column of the matrix. attention)”, “Ours(No decoder)” and “Ours(ClassMax)”.€rh
SeqViews2SeqglLabels learns the attention weights of tworresponding PR curves are presented in Fig. 6.
airplanes with similar patterns which are much differeoirir
the ones of bathtub. In addition, the learned attention ksig TABLE X
conform to the human Cognition of objects. Specifically, for RETRIEVAL COMPARISON UNDERMODELNET40AND MODELNET10,
. . . .. . I HIDDEN=128,EMBEDDING=256,RATE=0.0002.
shapes like airplanes with distinctive characteristicgsin

0

shape classes can make certain label predictions uponymere Methods Range | ModelNet40 | ModelNetl0
the first view. This can be observed in most red entries in Elt'g Psﬂesi ig-g? 33'@2
. . . . est-les . .
the first row of matrices in Fig. 4 (a) and (b). In contrast, for 3DShapeNets | Test-Test 49.23 68.26
shapes without distinctive characteristics, such as thietida Geometry image | Test-Test 51.30 74.90
which is similar to “cup” or “flowerpot”, most shape classes DeepPano Test-Test 76.81 84.18
need almost all views to predict each sequential label iellab suMVCND TestTest| 7950 ;
pre quentiz PANORAMA Test-Test 83.45 87.39
sequence, as shown by the inapparent entries in most columns GIFT Random 81.94 91.12
of the matrix in Fig. 4 (C) Triplet-Center [53] | Test-Test 88.0 -
SliceVoxel [32] Test-Test 77.48 85.34
D. Sh tri | Ours Test-Test 89.00 89.55
- Shape retreva Ours Test-Train 92.41 93.56
The performance of SeqViews2SegLabels is also evaluated 8‘”3 Tf/i'””'ATI rain gg-;g 3?'22
. . . . urs - . .
using the learned global features in shape retrieval experi OurS(LSTV) Test-Test 3583 o143
ments under ModelNet40, ModelNet10 and ShapeNetCore55 Ours(Start) Test-Test 88.09 89.80
respectively. Under ModelNet40 and ModelNet10, our result %UFS(('\’\'lO %ﬁent(ijong ?ESﬂES: gg-ig gg-gg
. . urs(No aecoaer est-les . .
are p_roduced with the global feat:Jres !’egrned by the tram_ed GIFTL Test-Test 86.56 89.04
SeqViews2SeqglLabels named as “Ours” in the corresponding oOurs(ClassMax) | Test-Test 89.09 89.45

Table VI, Table VII.

The shapes in ModelNet40 and ModelNet10 are originally Under the three subsets of ShapeNetCore55, i.e., training
split into a training set and a testing set. Thus, to compreheset, validation set and testing set, the retrieval perfoceaf
sively evaluate the performance of SeqViews2SeqLabels f8eqViews2SeqglLabels is compared with other state-oftthe-a
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learns global features with semantics. In addition, thesioth
part of the encoder-decoder structure of SeqViews2Sedt.abe
the decoder-RNN, predicts sequential labels based on the
learned global features. The decoder-RNN is able to capture
more and finer discriminative information among all shape
classes to effectively alleviate overfitting for highersddica-

tion accuracy. Finally, an attention mechanism is integgam

the decoder-RNN, which assigns heavier weights on the low-
level features of distinctive views for each shape clas® Th
introduced attention assists the encoder-RNN in learriigg t
semantic meaning of view sequences by dramatically reducin
the effect of the first view position. The attention mechanis

is experimentally verified to further improve the discriraiive
ability of SeqViews2SeqLabels.

> 29

Precision
Precision

3 04 05 06 07 08 09 1
Recall

(@) (b)

03 04 _05 06 07 08 09 1
Recall

Fig. 5. The comparison between precision and recall cureaired by
different methods under (a) ModelNet40 and (b) ModelNet10.

B. Limitations and future work

Although SeqgViews2SeqglLabels learns 3D global features
with high performance, it still suffers from two disadvagés.
First, SeqViews2SegLabels can only learn features viaeaggr
gating sequential views rather than any kind of unordered
views, such as views captured on a unit sphere centered at
3D shapes. Second, although RNNs are good at aggregating
sequential data, their ability is limited when the sequence
contains a large number of data, especially for the complex
data, such as views in this work. Thus, SeqViews2SeqLabels
merely performs well under limited number of sequential

methods in terms of different metrics. Considering thatghe"'€WS, €ven with the help of the attention mechanism.

is no comparison results under training set and validatein s Inghe futfure, It is ;/_volrth_ to e>_<p|o_re how to aggrega_:ﬁ Iargel
in [54], the results of state-of-the-art methods underingst numbers of sequential views in view sequences with nove

set are from the SHREC2017 retrieval contest [54], whif%eeIo Iea}rning models, since_ more views could provide more
the ones under training set and validation set are from tm;ormatlon to learn for discriminating 3D shapes.
SHREC2016 retrieval contest [30]. All involved 3D shapes
under ShapeNetCore55 are normal and are not perturbed
rotation. In Table XI, we present the performance obtained b
SeqViews2SegLabels respectively trained under viewsoatth
colors and views with colors, as the ones named as “Oufdl
(512)” and “Ours1” in Table VIII. The comparison shown in
Table XI implies that the performance of SeqViews2Seqlsabel3]
for shape retrieval is the best among all state-of-the-athm

Precision

\

Ours(LSTM) \

Ours(Start)

Ours(No attention)

— Ours(No decoder)
GIFTI
Ours(ClassMax)

0 01 02 03 04_05 06 07 08 09 1

Recall

S

—— Ours | 2
Ours(LSTM) 0.4

— Ours(Start)

Ours(No attention)
—— Ours(No decoder)
GIFTI o1
Ours(ClassMax)
0 01 02 03 04 05
Recal

(@ (b)

]l)ﬁ 07 08 09 1

Fig. 6. The comparison between precision and recall curtsraa by GIFT
and different variants of SeqViews2SegLabels under (a) @ifdet40 and (b)
ModelNet10 based on the same low-level view features.

REFERENCES

m, K. Lu, R. Ji, J. Tang, and Y. Gao, “Learning-based bigartgraph
matching for view-based 3D model retrievalEEE Transactions on
Image Processingvol. 23, no. 10, pp. 4553-4563, 2014.

H. Guo, J. Wang, Y. Gao, J. Li, and H. Lu, “Multi-view 3D aujt
retrieval with deep embedding networkEEE Transactions on Image
Processingvol. 25, pp. 5526-5537, 2016.

H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-MilléMulti-
view convolutional neural networks for 3D shape recognitioin
International Conference on Computer Visid015, pp. 945-953.

ods under all subsets, where our results under views withop1
colors and views with colors are listed as “Ours” and “Ours
(C)", respectively. In addition, the comparison betweesutts 5]
of “Ours” and “Ours (C)” also demonstrate that colors in
views for training do not significantly improve the retriéva
performance of SeqViews2SeqLabels. (6]

VI. CONCLUSIONS LIMITATIONS AND FUTURE WORK
A. Conclusions

In this paper, a novel deep learning model, Selél
gViews2SegLabels, is proposed to learn 3D global features

(7]

ﬁ H. Huang, E. Kalegorakis, S. Chaudhuri, D. Ceylan, V. Kiand

E. Yumer, “Learning local shape descriptors with view-lshs®nvo-
lutional neural networks,ACM Transactions on Graphic2017.

S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. J. Latecki, “GIFTowards
scalable 3D shape retrievalEEE Transaction on Multimedjavol. 19,
no. 6, pp. 1257-1271, 2017.

B. Shi, S. Bai, Z. Zhou, and X. Bai, “Deeppano: Deep panucarep-
resentation for 3D shape recognitioh2EE Signal Processing Letters
vol. 22, no. 12, pp. 2339-2343, 2015.

T. Furuya and R. Ohbuchi, “Deep aggregation of local 3D@rgetric
features for 3D model retrieval,” iRroceedings of the British Machine
Vision Conference2016.

C. Wang, M. Pelillo, and K. Siddigi, “Dominant set clusteg and
pooling for multi-view 3D object recognition,” ifroceedings of British
Machine Vision Conferenc@017.

via aggregating sequential views captured around 3D shapp$ z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, and X. Li, “Unsupised

on a circle. In existing methods, a pooling procedure is
employed to aggregate multiple views but suffers from two
issues, i.e., the lack of content information of almost ajio]
views and the lack of spatial information among the views. To
resolve these disadvantages, SeqViews2SeqLabels engrloys
encoder-RNN to aggregate sequential views, which effelgtiv

3D local feature learning by circle convolutional reseittboltzmann
machine,”IEEE Transactions on Image Processingl. 25, no. 11, pp.
5331-5344, 2016.

Z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, and C. Chen, “Meon-

volutional restricted boltzmann machines for unsupediarning of

features with structure preservation on 3D meshi¥=EE Transactions
on Neural Network and Learning Systemsl. 28, no. 10, pp. 2268 —
2281, 2017.



JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

13

TABLE XI
RETRIEVAL COMPARISON UNDERSHAPENETCORES5,HIDDEN=128,EMBEDDING=256,RATE=0.0002.
micro macro
Datasets | Methods | P@N R@N | FI@N | mMAP@N | NDCG@N | P@N R@N | FI@N | mAP@N | NDCG@N
Kanezaki | 0.810 0.801 0.798 0.772 0.865 0.602 0.639 0.590 0.583 0.656
Zhou 0.786 0.773 0.767 0.722 0.827 0.592 0.654 | 0.581 0.575 0.657
Tatsuma | 0.765 0.803 0.772 0.749 0.828 0.518 | 0.601 0.519 0.496 0.559
Furuya 0.818 0.689 0.712 0.663 0.762 0.618 | 0.533 | 0.505 0.477 0.563
Tesing Thermos | 0.743 0.677 0.692 0.622 0.732 0.523 | 0.494 | 0.484 0.418 0.502
Deng 0.418 0.717 0.479 0.540 0.654 0.122 0.667 0.166 0.339 0.404
Li 0.535 0.256 0.282 0.199 0.330 0.219 0.409 0.197 0.255 0.377
Mk 0.793 0.211 0.253 0.192 0.277 0.598 | 0.283 | 0.258 0.232 0.337
Su 0.770 0.770 0.764 0.735 0.815 0.571 0.625 | 0.575 0.566 0.640
Bai 0.706 0.695 0.689 0.640 0.765 0.444 | 0.531 0.454 0.447 0.548
Taco [55] | 0.701 0.711 0.699 0.676 0.756 - - - - -
Ours 0.5964 | 0.8034 | 0.6105| 0.8373 0.9022 0.1862 | 0.8144 | 0.2375| 0.6816 0.8364
Ours(C) | 0.6012 | 0.8122| 0.6158 | 0.8567 0.9082 0.1883 | 0.8285| 0.2405| 0.7266 0.8560
Su 0.805 0.800 0.798 0.910 0.938 0.641 0.671 0.642 0.879 0.920
Bai 0.747 0.743 0.736 0.872 0.929 0.504 | 0.571 0.516 0.817 0.889
Validation Li 0.343 0.924 | 0.443 0.861 0.930 0.087 0.873 | 0.132 0.742 0.854
Wang 0.682 0.527 0.488 0.812 0.881 0.247 0.643 | 0.266 0.575 0.712
Tatsuma | 0.306 0.763 0.378 0.722 0.886 0.096 | 0.828 | 0.140 0.601 0.801
Ours 0.8736 | 0.1036 | 0.1507 | 0.9556 0.9553 0.6478 | 0.3395| 0.3534 | 0.9240 0.9425
Ours(C) | 0.8771| 0.1374| 0.1893| 0.9496 0.9524 0.6443 | 0.4224 | 0.4010| 0.9146 0.9394
Su 0.939 0.944 | 0.941 0.964 0.923 0.909 0.935 | 0.921 0.964 0.947
Bai 0.841 0.571 0.620 0.907 0.912 0.634 | 0.452 0.472 0.815 0.891
Training Li 0.827 0.996 0.864 0.990 0.978 0.374 | 0.997 0.460 0.982 0.986
Wang 0.884 | 0.260 0.363 0.917 0.891 0.586 | 0.497 0.428 0.775 0.863
Ours 0.9954 | 0.0058 | 0.0115| 0.9996 0.9844 0.9930 | 0.0221 | 0.0424 | 0.9995 0.9909
Ours(C) | 0.9972 | 0.0059 | 0.0115| 0.9997 0.9842 0.9969 | 0.0222 | 0.0426 | 0.9997 0.9909
Z. Han, Z. Liu, C.-M. Vong, Y.-S. Liu, S. Bu, J. Han, and Chen, [23] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaumartiieg a

“BoSCC: Bag of spatial context correlations for spatialyhanced 3D
shape representationEEE Transactions on Image Processingl. 26,
no. 8, pp. 3707-3720, 2017.

Z. Han, Z. Liu, J. Han, C. Vong, S. Bu, and C. Chen, “Unsused [24]
learning of 3D local features from raw voxels based on a novel
permutation voxelization strategyfEEE Transactions on Cybernetics
2017, doi:10.1109/TCYB.2017.2778764.

C. R. Qi, H. Su, M. Nie3ner, A. Dai, M. Yan, and L. Guiba$pfumetric
and multi-view cnns for object classification on 3D data,” IEEE
Conference on Computer Vision and Pattern Recognit@®l6, pp.
5648-5656.

S. Hochreiter and J. Schmidhuber, “Long short-term rosgh Neural
Computation vol. 9, no. 8, pp. 1735-1780, 1997.

J. Xie, Y. Fang, F. Zhu, and E. Wong, “DeepShape: Deemézhshape
descriptor for 3D shape matching and retrieval, IBEE Conference on
Computer Vision and Pattern Recognitja2015, pp. 1275-1283.

J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergis,
“Geodesic convolutional neural networks on riemannian ifolfs,” in
Proc. of the International IEEE Workshop on 3D Represeatatand
Recognition 2015.

D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Caltani, and
P. Vandergheynst, “Learning class-specific descriptorsdiformable
shapes using localized spectral convolutional networkdgmputer
Graphics Forumvol. 34, no. 5, pp. 13-23, 2015.

J. Xie, M. Wang, and Y. Fang, “Learned binary spectraphdescriptor
for 3d shape correspondence,”IBEE Conference on Computer Vision
and Pattern Recognitiqr2016.

Z. Han, Z. Liu, C. Vong, Y.-S. Liu, S. Bu, J. Han, and C. @he [31]
“Deep spatiality: Unsupervised learning of spatially-enbed global and

local 3D features by deep neural network with coupled softini&EEE
Transactions on Image Processjngl. 27, no. 6, pp. 3049-3063, 2018.[32]
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and &d “3D
ShapeNets: A deep representation for volumetric shapeBjoiceedings
of IEEE Conference on Computer Vision and Pattern Recagnifl015,
pp. 1912-1920.

A. Sharma, O. Grau, and M. Fritz, “VConv-DAE: Deep voletric shape
learning without object labels,” iProceedings of European Conference[34]
on Computer Vision2016, pp. 236—-250.

R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, dtréng a pre-
dictable and generative vector representation for objaot$roceedings
of European Conference on Computer Visi@016, pp. 484—499.

[25]

[26]

[27]

(28]

[29]

(30]

(33]

(35]

probabilistic latent space of object shapes via 3D generativersarial
modeling,” in Advances in Neural Information Processing Systems
2016, pp. 82-90.

P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, ‘CNN:
Octree-based convolutional neural networks for 3D shapeysis,”
ACM Transactions on Graphicsol. 36, no. 4, pp. 72:1-72:11, 2017.
D. Chen, X. Tian, Y. Shen, and M. Ouhyoung, “On visual i&mity
based 3D model retrievalComputer Graphics Forupvol. 22, no. 3,
pp. 223-232, 2003.

J. Xie, G. Dai, F. Zhu, and Y. Fang, “Learning barycentepresentation-
s of 3D shapes for sketch-based 3D shape retrievalEHE Conference
on Computer Vision and Pattern Recogniti®017.

K. Sfikas, T. Theoharis, and |. Pratikakis, “Exploititiie PANORAMA
Representation for Convolutional Neural Network Clasatfan and
Retrieval,” in Eurographics Workshop on 3D Object RetrievaD17,
pp. 1-7.

A. Sinha, J. Bai, and K. Ramani, “Deep learning 3D shapdases
using geometry images,” iEuropean Conference on Computer Vision
2016, pp. 223-240.

A. Kanezaki, Y. Matsushita, and Y. Nishida, “Rotati@inJoint object
categorization and pose estimation using multiviews fraraupervised
viewpoints,” in IEEE Conference on Computer Vision and Pattern
Recognition 2018.

M. Sawva, F. Yu, H. Su, M. Aono, B. Chen, D. Cohen-Or, W.nDge
H. Su, S. Bai, and X. Bai, “Shrec’16 track large-scale 3D shap
retrieval from shapeNet core55,” iIBG 2016 workshop on 3D Object
Recognition 2016.

E. Johns, S. Leutenegger, and A. J. Davison, “Pairwemhposition of
image sequences for active multi-view recognition,|BEE Conference
on Computer Vision and Pattern Recogniti®016, pp. 3813-3822.

R. Miyagi and M. Aono, “Sliced voxel representationstwiLSTM and
CNN for 3D shape recognition,” iAsia-Pacific Signal and Information
Processing Association Annual Summit and Conferef6&7.

T. Le, G. Bui, and Y. Duan, “A multi-view recurrent nelir@etwork for
3D mesh segmentationComputers and Graphicsol. 66, pp. 103-112,
2017.

B. Shi, X. Bai, and C. Yao, “An end-to-end trainable redunetwork
for image-based sequence recognition and its applicatirscene
text recognition,”IEEE Transactions on Pattern Analysis and Machine
Intelligence vol. 39, no. 11, pp. 2298-2304, 2017.

B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust sceegt recog-



JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

nition with automatic rectification,” iHEEE Conference on Computer
Vision and Pattern Recognitior2016, pp. 4168—4176.

K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakiinov, R. S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural imagptioa
generation with visual attention,” ilCML, vol. 37, 2015, pp. 2048—
2057.

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and ¥n@io,
“Attention-based models for speech recognition,/Aidvances in Neural
Information Processing Systen®015, pp. 577-585.

K. Simonyan and A. Zisserman, “Very deep convolutionatworks for
large-scale image recognitionCoRR vol. abs/1409.1556, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagémtassification
with deep convolutional neural networks,” Advances in Neural Infor-
mation Processing Syste2012, vol. 25, pp. 1097-1105.

K. Cho, B. V. Merrienboer, D. Bahdanau, and Y. Bengio,n“Ghe
properties of neural machine translation: Encoder-dacagproaches,”
Computer Science2014.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine station by
jointly learning to align and translateCoRR vol. abs/1409.0473, 2014.

A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanra@nHuang,

Z. Li, S. Savarese, M. Sawva, S. Song, H. Su, J. Xiao, L. Vi, an
F. Yu, “ShapeNet: An information-rich 3D model repositdrf;oRR
vol. abs/1512.03012, 2015.

A. Brock, T. Lim, J. Ritchie, and N. Weston, “Generatigad discrimi-

native voxel modeling with convolutional neural netwotks, 3D deep
learning workshop (NIP$)2016.

D. Maturana and S. S., “Woxnet: A 3D convolutional nduratwork for

real-time object recognition,” itnternational Conference on Intelligent
Robots and System2015, pp. 922-928.

Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas, “FPNN: Eigrobing
neural networks for 3D data.” iNIPS 2016, pp. 307-315.

R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, dtrng a pre-
dictable and generative vector representation for objeictsEuropean
Conference on Computer VisioR016, pp. 484—499.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deeprféng on
point sets for 3D classification and segmentation,IBEE Conference
on Computer Vision and Pattern Recogniti®017.

C.R. Qi, L. Vi, H. Su, and L. J. Guibas, “Pointnet++: Deigrarchical
feature learning on point sets in a metric space Advances in Neural
Information Processing Systen®017, pp. 5105-5114.

Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Railoud auto-
encoder via deep grid deformation,” IEEE Conference on Computer
Vision and Pattern Recognitior2018.

J. Li, B. M. Chen, and G. H. Lee, “SO-Net: Self-organgimetwork
for point cloud analysis,” inThe IEEE Conference on Computer Vision
and Pattern Recognitiqr2018.

N. Sedaghat, M. Zolfaghari, E. Amiri, and T. Brox, “Omiation-
boosted voxel nets for 3D object recognition,”Bmitish Machine Vision
Conference 2017.

J. Xie, Z. Zheng, R. Gao, W. Wang, S.-C. Zhu, and Y. N. Wiedrning
descriptor networks for 3D shape synthesis and analysis,JEEE
Conference on Computer Vision and Pattern Recognitfi18.

X. He, Y. Zhou, Z. Zhou, S. Bai, and X. Bai, “Triplet-cemtloss for
multi-view 3D object retrieval,” inThe IEEE Conference on Computer
Vision and Pattern Recognitior2018.

M. Sawva, F. Yu, H. Su, A. Kanezaki, T. Furuya, R. Ohbuychi Zhou,
R. Yu, S. Bai, X. Bai, M. Aono, A. Tatsuma, S. Thermos, A. Axpoa-
los, G. T. Papadopoulos, P. Daras, X. Deng, Z. Lian, B. Li, éhah,
Y. Lu, and S. Mk, “SHREC'17 Large-Scale 3D Shape Retrievahir

ShapeNet Core55,” iturographics Workshop on 3D Object Retrigval
2017.

T. S. Cohen, M. Geiger, J. Khler, and M. Welling, “Sploati CNNs,”
in International Conference on Learning Representatid218.

Zhizhong Han is a PhD student with Northwestern
Polytechnical University, China. He is majored in
pattern recognition and machine intelligence. Hig
research interests include machine learning, patte

recognition, feature learning and digital geometry
processing.

14

Mingyang Shang is currently a master candidate
in the School of Software at Tsinghua University.
He received his BS in Software Engineering from
Dalian University of Technology, China, 2016. His
research interests include deep learning, shape anal-
ysis and pattern recognition and NLP.

Zhenbao Liu (M'11) is currently a Professor with
Northwestern Polytechnical University, China. He
received the Ph.D. degree from the College of Sys-
tems and Information Engineering, University of
Tsukuba, Tsukuba, Japan, in 2009. He was a visiting
scholar with Simon Fraser University, Canada, in
2012. He has published approximately 50 papers
in major international journals and conferences. His
research interests include pattern recognition, com-
puter vision, and shape analysis.

Chi-Man Vong (M'09-SM’14) received the M.S.
and Ph.D. degrees in Software Engineering from the
University of Macau in 2000 and 2005, respectively.
He is currently an Associate Professor with the
Department of Computer and Information Science,
Faculty of Science and Technology, University of
Macau. His research interests include machine learn-
ing methods and intelligent systems.

Yu-shen Liu is an Associate Professor in School
of Software at Tsinghua University, Beijing, China.
He received his BS in mathematics from Jilin Uni-
versity, China, in 2000. He earned his PhD in the
Department of Computer Science and Technology
at Tsinghua University, China, in 2006. He spent
three years as a post doctoral researcher in Purdue
University from 2006 to 2009. His research interests
include shape analysis pattern recognition, machine
learning and semantic search.

Matthias Zwicker is a professor at the Department
of Computer Science, University of Maryland, Col-
lege Park, where he holds the Reginald Allan Hahne
Endowed E-nnovate chair. He obtained his PhD from
ETH in Zurich, Switzerland, in 2003. Before joining
University of Maryland, he was an Assistant Profes-
sor at the University of California, San Diego, and
a professor at the University of Bern, Switzerland.
His research in computer graphics covers signal
processing for high-quality rendering, point-based
methods for rendering and modeling, 3D geometry

processing, and data-driven modeling and animation.

Junwei Han (M’'12-SM’15) is a currently a Pro-
fessor with Northwestern Polytechnical University,
Xi'an, China. He received his Ph.D. degree in pat-
tern recognition and intelligent systems from the
School of Automation, Northwestern Polytechnical
University in 2003. His research interests include
multimedia processing and brain imaging analysis.
He is an Associate Editor of IEEE Trans. on Human-
Machine Systems, Neurocomputing, and Multidi-
mensional Systems and Signal Processing.

C.L. Philip Chen (S’88CM'88CSM'94CF'07) re-
ceived his M.S.degree in electrical engineering from
University of Michigan, Ann Arbor, in 1985 and the
Ph.D. degree in electrical engineering from Purdue
University, West Lafayette, in 1988. After having
worked at U.S. for 23 years as a tenured professor,
as a department head and associate dean in two
different universities, he is currently the Dean of the
Faculty of Science and Technology, University of
Macau, Macau, China and a Chair Professor of the
Department of Computer and Information Science.



