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Figure 1: We present an end-to-end system for stereoscopic 3D copy & paste. Left column: stereo input images (only left eye shown). Middle
and right column: two results of stereo copy & paste. All anaglyph images in this paper are best viewed with Red/Cyan glasses, with Red =
Left eye. For optimal viewing, we encourage the reader to look at the results in the electronic version of our paper.

Abstract
With the increase in popularity of stereoscopic 3D imagery for film,
TV, and interactive entertainment, an urgent need for editing tools
to support stereo content creation has become apparent. In this pa-
per we present an end-to-end system for object copy & paste in a
stereoscopic setting to address this need. There is no straightfor-
ward extension of 2D copy & paste to support the addition of the
third dimension as we show in this paper. For stereoscopic copy &
paste we need to handle depth, and our core objective is to obtain
a convincing 3D viewing experience. As one of the main contri-
butions of our system, we introduce a stereo billboard method for
stereoscopic rendering of the copied selection. Our approach pre-
serves the stereo volume and is robust to the inevitable inaccuracies
of the depth maps computed from a stereo pair of images. Our sys-
tem also includes an interactive stereoscopic segmentation tool to
achieve high quality object selection. Hence, we focus on intuitive
and minimal user interaction, and our editing operations perform
within interactive rates to provide immediate feedback.

CR Categories: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation;

Keywords: Multi-View & 3D, Computational Photography

1 Introduction
Recently stereoscopic 3D has gained in popularity—again—which
has resulted in stereoscopic 3D efforts in everything from 3D cin-
ema to 3D TV at home. With this arises the need for 3D content
creation and editing tools. The goal of this paper is to address this
need. It is not straightforward to extend existing 2D tools to 3D,
since the extension to 3D introduces challenges related to recover-

ing the depth, and maintaining comfortable stereo perception, in-
cluding ensuring the correct handling of occlusions.
In this paper we focus on a specific editing application: copy &
paste for stereoscopic 3D images. Our motivation for choosing this
application is three-fold: 1) if “3D-at-home” will be successful,
many people will eventually own a 3D TV which will be capa-
ble of displaying 3D photographs, 2) recently 3D digital cameras
have been introduced [Fuji 2009] which make 3D photography eas-
ily realizable for many, and 3) photo editing tools for 2D images
have proven popular among professionals as well as casual users.
We will present a complete system for 3D copy & paste consist-
ing of the following components: depth reconstruction, selection,
and composition. We will also describe our contributions for each
component.
Copy & paste for 2D images has received a lot of attention in recent
years [Pérez et al. 2003; Georgiev 2006; Farbman et al. 2009]. The
users’ task for a plausible selection is to find objects which match
in scale and orientation with that of the target. Objects can then be
selected with a “rough” selection. No accurate segmentation of the
object is required, provided that backgrounds are either uniformly
colored or have similar texture. Simply applying these 2D methods
in the source and target to the left and right eye images is not suffi-
cient, since 3D copy & paste has to take stereopsis into account and
avoid stereopsis rivalry: conflicting cues to the human visual sys-
tem in the left and right eye images which could severely strain the
visual system, or even destroy the 3D illusion altogether [Howard
and Rogers 2002; Patterson 2007; Lambooij et al. 2009]. More
specifically, important aspects are:
• Occlusion, being an important depth due, has to be handled

correctly.
• Maintain the copied objects’ stereo volume, i.e., the

anisotropic parallax between pixels that belong to the object
and provide the cues for its 3D shape. Loss of this information
leads to the so-called “cardboarding” effect, where objects ap-
pear as flat planes in depth.

• The composition result should be consistent for both left and
right eye images. The pasted object should assume the correct
orientation depending on the surface orientation in the target,
which varies with the desired location for pasting.
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• The copied object disparities in the target should be such that
the depth composition is correct with respect to the depth in
the target.

To take these aspects into account for 3D copy & paste introduces
the problem of recovering the depth information. Many existing
methods for two-view stereo have been presented to compute per-
pixel disparities [Scharstein and Szeliski 2010]. However, for input
images of arbitrary scenes the computed disparities are often inac-
curate.
Furthermore, another challenge is to seamlessly composite the
copied selection into the target. The aforementioned 2D copy &
paste methods may result in smearing artifacts in the case where
the backgrounds are dissimilar in texture. Only composition us-
ing alpha mattes can seamlessly blend objects with dissimilar back-
grounds [Wang and Cohen 2008]. High quality alpha mattes will
require accurate segmentation of the object to be copied and pasted.
Finally, direct rendering methods, e.g., forward mapping or geom-
etry mesh approximation, may result in artifacts in the case of inac-
curate depth maps.

Contributions To address these challenges, we have developed
an end-to-end system for 3D copy & paste with the following addi-
tional contributions:
• Automatic propagation of the segmentations from left eye to

right eye image (Section 3.2).
• Registration with respect to the local underlying support sur-

face in the target (Section 3.3.1).
• Rendering using stereo billboards, which avoids the so-called

“cardboarding” effect and preserves the original stereo vol-
ume of the source selection (Section 3.3.3).

• Generation of contact shadows by transferring the disparity
map to the target and using an image space ambient occlusion
approach (Section 3.3.5).

Paper Organization The remainder of this paper is organized as
follows: we discuss related work in Section 2, and a detailed de-
scription of our system is given in Section 3, results obtained with
our system are presented in Section 4, a discussion of the presented
system and outlook on future work is given in Section 5, and finally
Section 6 provides concluding remarks.

2 Related Work
We summarize prior work that is relevant to the challenges de-
scribed in the previous section and to the components of our sys-
tem, which we describe in the following. We furthermore describe
how we address some of the presented problems.

Disparity Maps An important requirement of our system is
computing disparity maps. Many two-view stereo disparity map
methods, classified according to Scharstein and Szeliski [2002],
have been reported in the literature and their relative scores are
listed [Scharstein and Szeliski 2010]. However, to date no method
can produce accurate disparity maps for arbitrary input images such
as those typically found in people’s digital photo collections. Our
system therefore aims to be robust with respect to depth map inac-
curacies.

Segmentation Accurate segmentation is inherently user assisted
and iterative. Rother et al. [2004] describe a method that itera-
tively applies graph cuts optimization. Users may provide addi-
tional hints to refine the segmentation. Liu et al. [2009b] let the
user paint strokes to denote foreground object and an incremental
graph cuts scheme updates the segmentation in real-time. Multi-
object segmentation for both methods would require a significant

amount of user interaction. Lu et al. [2007] describe a multi-class
segmentation method, but this can handle only a small number of
distinct classes and is computationally expensive. To allow for easy
multiple object segmentation we combine the fast cluster-merging
method by Ning et al. [2010], and mean-shift clustering [Comaniciu
and Meer 2002].
Pop-up light field [Shum et al. 2004] is an image-based rendering
system that models a sparse light field using a layered represen-
tation. In this system, the user interactively segments layers for
pop-up until some desired quality is met. Our system shares some
similarities with pop-up light field, but we work with stereoscopic
input instead of sparse light fields. In addition, our layers are not
flat, but we preserve stereo volume using our stereo billboards. Fi-
nally, we focus on editing using copy & paste, while pop-up light
field is mainly concerned with high quality rendering.

Cosegmentation Propagating the segmentations from one eye
image to the other eye image is related to cosegmentation. Coseg-
mentation aims at segmenting the common parts between a pair or a
sequence of images. Rother et al. [2006] exploit histograms for con-
sistency between foreground objects in images. Cheng et al. [2007]
encode the consistency between objects in frames within a prior
and solve a mixture model. Zitnick et al. [2005] aim for consistent
segmentation and motion simultaneously, using segment shape and
optical flow between images as constraints and finally solving an
energy minimization problem. Motion, optical flow, and tracking
have also been proposed in segmentation propagation for video se-
quences [Chuang et al. 2002; Agarwala et al. 2004]. Rather than
relying on multiple frames, or modeling the consistency between
objects explicitly, we have chosen to adopt Video Snapcut [Bai et al.
2009] which propagates a set of local windows along the segmen-
tation contour with associated color and shape information.

Copy & Paste Copy & paste using Poisson image editing [Pérez
et al. 2003] has the advantage that no accurate segmentation is nec-
essary, but requires care to be taken to avoid smearing in the case of
dissimilar backgrounds. Drag and Drop Pasting [Jia et al. 2006] at-
tempts to avoid smear by computing an optimal boundary for Pois-
son blending. However this method still will not produce desired
results for multiple (partially occluding) objects of different tex-
tures. Alpha matting [Wang and Cohen 2008] on the other hand
will be able to handle such cases, and we compute alpha mattes for
all segmentations in our system.
In Photo Clip-Art [Lalonde et al. 2007] objects are inserted into a
target image from a database of pre-segmented and labeled images.
The 3D scene structure, and lighting are estimated by image analy-
sis and to determine which object to retrieve from the database. In
our case the user explicitly selects the objects to be copied from and
pasted into stereoscopic 3D images, and we address the challenges
that arise with this.

Stereo Editing & Display Several stereoscopic editing ap-
proaches exist. Stereoscopic Inpainting [Wang et al. 2008] de-
scribes a segmentation-based method which exploits disparity maps
to fill in missing depth and color due to occlusion in stereoscopic
images. Editing methods for manipulating stereo parameters, e.g.,
stereo baseline, compute disparity maps to adjust the parameters lo-
cally or globally [Lang et al. 2010; Koppal et al. 2010; Wang and
Sawchuk 2008]. A commercial stereo editing tool we are currently
aware of is the Ocula plug-in for Nuke [The Foundry 2010]. The
focus in these methods is either on foreground object removal, color
correction, alignment correction, or stereo view synthesis rather
than object copy & paste.
Rhee et al. [2007] introduced the concept of stereo billboards as
planar proxies for stereoscopic telepresence display under the as-
sumption that objects are always humans and fronto-parallel to the
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Figure 2: Workflow for 3D copy & paste. Given a stereoscopic pair of source and target images, the first component is depth reconstruction,
which could be performed offline prior to online editing. Next the user performs segmentation and selection of the object(s) to be copied.
Finally the copied object(s) is pasted into the target at some desired location, and the result is a composited stereo pair of images.

camera. In contrast, our stereo billboards are more general: they
can represent arbitrary 3D objects, and the (optimal) orientations
are computed using the objects’ reconstructed 3D points as con-
straints.

3 3D Copy & Paste
Our 3D copy & paste system allows a user to select objects from
several stereoscopic source images and composite them into a de-
sired stereoscopic target image. The editing workflow for 3D copy
& paste is shown in Figure 2. Input to the system are stereoscopic
pairs of images for the source and target. The system can be divided
into three components:

1. Depth Reconstruction.
2. Selection.
3. Composition.

The first component, Depth Reconstruction (Section 3.1), is an es-
sential step to determine the depth structure of the source and target
scenes. The reconstructed depth is then subsequently used during
selection to support segmentation; and during composition to sup-
port object placement, occlusion handling, and the stereo billboard
steps. Our main challenge is in ensuring high quality results in the
presence of inaccuracies in the computed depth maps.
In the next component, Selection (Section 3.2), the user selects one
or more objects from source images to be copied to any desired
location in the target. To support this goal, several steps are neces-
sary in preparing the source and target images. Accurate boundary
segmentation of objects, ground planes, backgrounds etc. in both
source and target images is required. We have implemented an in-
teractive segmentation tool. To reduce the amount of required user
input and ensure consistent segmentations, the segmentation for the
left eye is automatically propagated to the right eye image.
In the final component, Composition (Section 3.3), the user de-
termines a desired location for pasting the copied selection in the
target. Composition is performed interactively while the user is
viewing the resulting composite stereoscopically. The system con-
tinuously ensures consistent orientation of the cloned object with
the local orientation in the target, by computing a best-fit alignment
with the targets’ local underlying surface (Section 3.3.1). Further-
more, since only two views are available and to avoid the need for
in-painting, the system constrains the amount of rotation and aims
to keep the objects “forward facing” (Section 3.3.2). To ensure that
the stereo volume of the objects is preserved, and avoid the cloned
objects from appearing flat, we have developed a method we refer
to as stereo billboards (Section 3.3.3). Copied objects are sorted
in depth for correct occlusions (Section 3.3.4). Finally, our system
computes approximated contact shadows (Section 3.3.5) to avoid

the copied objects from appearing to float. We will next describe
the individual components in more detail.

3.1 Depth Reconstruction

Dense depth maps with per-pixel depth values can be recovered
from the stereo pair of images by computing disparities. Many
methods for computing disparities based on two views have been
reported in the literature and the results on reference images are
compared to one another, see [Scharstein and Szeliski 2010]. Dis-
parity computation suffers from two main problems: first, the dis-
parities in certain areas may not correspond to the correct disparity
values due to the limitations of the particular algorithm and second,
the disparity values may be incorrect due to occlusions between the
left and right eye images. Our system is thus designed to be able to
perform copy & paste editing in the presence of (locally) inaccurate
depth maps.
We assume that the camera parameters, both intrinsic and extrinsic,
are known prior to loading the images into the system . We use the
method presented by Smith et al. [2009] for computing the disparity
map between the left and right image, and between right and left
image. Using the camera parameters and the disparity maps we
compute per-pixel depths [Hartley and Zisserman 2004]. For the
remainder of this paper we assume that disparity maps and depth
maps are one and the same and we use the terms interchangeably.

3.2 Selection

Our goal is to provide the user with the flexibility of selecting multi-
ple objects from the source, and paste them at any desired location
in the target. To support this goal, both source and target should
be accurately partitioned into segments corresponding to objects,
surfaces and backgrounds. Accurate real-world object segmenta-
tion requires a significant amount of user interaction in the form of
strokes to mark fore- and background pixels. To reduce the amount
of user interaction we have implemented an interactive multiple ob-
ject segmentation approach with automatic propagation from one
eye to the other.

Interactive segmentation Different objects usually have differ-
ent color distributions compared to the background and we exploit
this assumption to reduce the amount of required user strokes. We
start the procedure by computing a mean-shift clustering [Comani-
ciu and Meer 2002] on the image. This results in some initial seg-
mentation of the image into fore- and background objects. Increas-
ing the mean-shift kernel size, more aggressively merges clusters
across the entire image. We observe that, compared to the back-
ground surfaces, the foreground objects’ delicate contours require
a smaller mean-shift kernel size to better preserve details. We thus
employ the following scheme: the user adjusts the kernel size un-
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(a) Mean-shift kernel adjustment (k = kernel size)
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Figure 3: (a) Adjusting the kernel size can ease multi-object segmentation, because the largest clusters usually correspond to separate objects.
(b) With a larger kernel size, the user is able to do the clustering with less strokes. (c) Segmentation refinement of the pineapple through four
iterations of graph cuts optimization. The corresponding probability maps estimated from overlapping localized classifiers are shown in (d).
Classifier windows are only defined along the segmentation boundary, with some outlined in blue for illustration purposes. Green denote
values based on local GMMs, while red values are based on the global GMM. The intensity directly corresponds to the probability. As the
segmentation is improved, the number of red windows decreases. (e) Propagation results from the left eye image to the right eye image. Pixels
with unknown segmentation are shown in white.

til the foreground objects are sufficiently clustered into an initial
segmentation (Figure 3a), next the user provides strokes to merge
clusters and improve the segmentation of the foreground objects
(Figure 3b). These two steps can be repeated until some desired
segmentation of the foreground objects has been achieved. The re-
maining clusters of the background surface can then be merged with
only a small number of strokes. Please see our accompanying video
for further demonstration.
Besides using color information, we further exploit the disparities
as a fourth channel in the mean-shift to improve the cluster bound-
aries, since disparities computed earlier already largely have dis-
continuities along object silhouettes. Furthermore, the user can ad-
just the kernel size adaptively for each object.
We merge clusters using the maximal-similarity merging mecha-
nism [Ning et al. 2010]. Clusters covered by the users’ stroke are
first merged and marked as selected, and the selection is then prop-
agated iteratively. More specifically, if cluster R is selected, we
merge cluster Q with R if:

1. R and Q are adjacent, and
2. ρ(R,Q) = max

S∈N (Q)
ρ(Q,S).

Here N (Q) denotes the set of adjacent clusters to Q, and ρ(R,Q)
measures the similarity of two clusters in color and depth. Instant
visual feedback is provided to the user during sketching, similar
to Paint Selection [Liu et al. 2009b], allowing the user to decide
whether to continue or stop sketching.

Segmentation refinement with localized classifiers User in-
put strokes help differentiate objects in the scene. However, due
to color ambiguity or estimation errors in the disparity maps, the
contours of the merged clusters may not fit the object boundary
accurately, as shown in iteration 0 of Figure 3c. Therefore, af-
ter each stroke sketch, the contours are refined by applying graph
cuts optimization [Boykov et al. 2001] using overlapping localized
classifiers [Bai et al. 2009]. Bai et al. use the localized classi-
fiers to propagate a segmentation in a current frame to subsequent

frames in a video sequence. In our work, we use a similar method
for both contour refinement in the left image and for propagating
the segmentation to the right image. We first discuss the contour
refinement for the segmentation in the left image.
Bai et al. [2009] assume an accurate segmentation of the first frame
as input. They then define a set of overlapping windows whose cen-
ters lie on the segmentation boundary, shown in Figure 3d. Each
window contains both background pixels (black) and foreground
object pixels (green or red). Color statistics for each window are
gathered, and a classifier assigns to every foreground pixel within
that window, a probability of that pixel belonging to the foreground.
Bai et al. advocate using small local windows. However, as stated
above, our initial segmentation may be inaccurate and hence, the lo-
cal statistics for small windows may be incorrect. Larger windows
would then be required for the inaccurate areas along the boundary.
Since there is no knowledge of where the inaccurate areas are, we
create two different sized windows at each sampled location on the
boundary: one small (30× 30 pixels) and one larger (60× 60 pix-
els). For each window we build a Gaussian Mixture Model (GMM)
in the Luv color space using local color statistics. In addition, we
use information from the whole image to build a global GMM. For
each window size we then compute the model confidence for both
local and global GMMs (see Equation 2 in [Bai et al. 2009]), and we
pick the one with the highest confidence. We run several iterations
of 2-label graph cuts refinement for each input stroke. After each
iteration we update the local classifiers along the new boundary.
The refinement results are shown in Figure 3c, and the correspond-
ing local windows in Figure 3d (with foreground pixels in windows
using local GMM in green, and in windows using global GMM in
red).

Consistent propagation. To avoid the need for the user to re-
peat the segmentation procedure for the right image, we propagate
the segmentation result from the left image. We exploit the dispar-
ity map and only propagate those pixels with coherent disparities
between the left and right images, since those pixels tend to have
classifiers with strong confidence. A pixel is said to have coherent
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disparities if the difference between the disparity from the left to
the right image, and the disparity from the right to the left image is
one pixel or less. The initial propagation result, i.e., iteration 0, is
shown in Figure 3e. Since the image after propagation is initially
sparsely segmented, we also propagate the local classifiers from the
left image. However, we compute a new global GMM on the second
image using only pixels with coherent disparities. We compute the
confidence values as described above and pick the one with highest
confidence. We perform several iterations of k+1-label graph cuts
for global refinement for k partitioned segments. An example is
shown in Figure 3e. In addition, if the automatic propagation does
not give the desired quality of segmentation, the user may provide
additional strokes for refinement.

3.3 Composition

In the final component of our system the user composites (pastes)
the selection in the target images. To support interactive explo-
ration of the location for pasting, we aim for interactive perfor-
mance while the user observes the resulting composite in stereo
3D. However, as explained in Section 1, composition needs to take
the various aspects related to stereopsis into account: target depth
composition, consistency, occlusions, and stereo volume. To ad-
dress these aspects we perform the following steps:
• Alignment of the pasted object with the local underlying sur-

face in the target.
• Constraining the rotation of the pasted object to avoid the need

for in-painting or object completion.
• Stereo volume preservation using stereo billboards.
• Depth sorting to determine the correct visibility, i.e., occlu-

sions.
• Shadow estimation using the depth map and an ambient oc-

clusion technique.
Inaccuracies in the depth maps preclude direct artifact free render-
ing of the selection, either using, for example, point sample ren-
dering [Zwicker et al. 2002], or mesh fitting [Zitnick et al. 2004].
For robustness with respect to inaccuracies in the depth maps we
introduce the stereoscopic extension of billboard rendering which
we have labeled stereo billboards. In the remainder of this Section
we will explain the above steps in more detail. For all our meth-
ods, we represent the geometry (point clouds) of both source and
target scenes in a common coordinate frame. We define the center
of projection of the left eye camera as the origin of a 3D coordinate
system, and align the source and target camera to lie at the origin of
this frame.

3.3.1 Local Surface Orientation Alignment

In the real world, objects are typically placed on some supporting
surface, e.g., a table or a sidewalk. Therefore, when an object is
copied from a source to a target image, our system aims to orient it
in such a way that its support surface in the source becomes aligned
with an appropriate support surface in the target. As an example
consider the situation in Figure 4. When the pineapple from the
source scene on the left is copied into the target on the right, we
aim to align the supporting table surfaces. This registration problem
could be solved using a general point cloud registration technique
[Besl and McKay 1992]. We observe, however, that in practice
objects are mostly placed onto planar support surfaces. Therefore
we use a simple strategy to align supporting planes.
During the Selection step the images have been segmented, and
each foreground object and background surface is represented by a
segment. For a selected object in the source we define a set S of
neighbor segments. For example in Figure 4 the pineapple has the
table as its neighbor segment. When the object is pasted into the

table

wall

table

object

align table to wall

align table to table

source

target

table

wall

Figure 4: Left: Source and target scene images (left eye) with dif-
ferent orientations of the support surfaces. Middle+Right: After the
pineapple is copied and pasted into the target scene, we compute a
transformation for best alignment. In this case, there are two pos-
sible alternatives, but the best choice would be to align the source’s
table surface to the target’s table surface.

target, S will overlap with a set Ŝ of segments in the target scene.
In the example of Figure 4, Ŝ contains the target’s table and wall
segments. Exploiting the fact that support surfaces typically are
planar, we estimate a least squares fitting plane for each s ∈ S and
ŝ ∈ Ŝ. For each segment in {S, Ŝ} we define a coordinate frame
(R, t), with rotation R : R3 → R3 and translation t. We define t
as the centroid of the 3D points associated with the segment, and R
is computed from the normal of the estimated plane. We then aim
to find the two segments s∗ and ŝ∗ with the most similar orienta-
tion, i.e., they minimize the rotation required to align the source and
target segment:

(s∗, ŝ∗) = argmin
s∈S,ŝ∈Ŝ

‖ RŝR�1
s ‖. (1)

The desired alignment transformation TA(x) = RA(x) + tA is the
transformation that aligns these two segments. It can be computed
as

RA = Rŝ∗R�1
s∗ ,

tA = tŝ∗ � RA(ts∗). (2)

Instead of using the entire segments, in practice we only use infor-
mation from partial segments. Partial segments are determined by
taking a predefined area around the selected object, e.g., the rectan-
gular orange area around the pineapple in Figure 4. We denote such
partial segments as patches.

3.3.2 Rotation Constraints

If one could move an object freely in 3D, parts that previously were
hidden would become visible, as shown in Figure 5a. With stereo-
scopic input images we have no data available for the invisible parts
and hence, in-painting or object completion techniques would be
required to handle such rotations. To avoid these difficult tasks of
in-painting and object completion, we try to keep the object’s “for-
ward facing” orientation of the source images. We accomplish this
by rotating the object around the normal of the support plane com-
puted during the alignment step.

Assume t is the centroid of the object in the source scene, and t̂ is
its new location after being pasted into the target scene. With the
alignment transformation in Equation 2 we get:

t̂ = TA(t) = RA(t) + tA. (3)

We denote the up vector of the camera as u, and determine the angle
θ between the projections of t and t̂ onto the ground plane (see Fig-
ure 5(a)). We can then apply a corresponding rotation RF to ensure
a target orientation as close as possible to the source orientation of
the object. RF is defined as:
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Figure 5: (a) Due to missing data (shaded in red), only part of
the repositioned object can be rendered onto the composited image.
(b) We compensate the perspective change by rotating the object
back, around the normal of the support patch, so that most of the
available data still faces the viewer.

RF = θn, (4)

where θn is the so-called Euler axis–angle representation, and n
denotes the normal of the support segment, as shown in Figure 5b.
We can compute θ as:

θ = sin−1

(
‖(t− (t · u)u)× (̂t− (̂t · u)u)‖
‖t− (t · u)u‖‖̂t− (̂t · u)u‖

)
, (5)

In other words, we rotate the object around n at its centroid t̂ with
angle θ. The rotation constrained result may not be fully satisfying
to the user and we thus provide additional user control over the
rotation for each pasted object in the scene.

3.3.3 Stereo Billboards

The transformations TA and RF from above determine the desired
pose of the selected object copied into in the target. Due to the inac-
curacies in the computed disparities, the objects’ corresponding 3D
point clouds are not suitable for direct rendering. To overcome this
problem we adopt the motivation from Liu et al. [2009a] to com-
pute parametric warps for rendering. We approximate the 3D point
clouds with planar proxies, and we compute homographies for the
left and right eye as our parametric warps for rendering. However,
the stereo volume of the source object is implicitly encoded by the
3D point cloud, and representing them by a plane could make the
composited object appear flat: the so-called cardboarding effect in
stereo. In order to preserve the stereo volume of the source objects
in stereoscopic 3D, we introduce an approach we call stereo bill-
boards. The goal is then to determine a single planar proxy, such
that the error between points projected by the parametric warp, and
points from the projected 3D point clouds, is minimized.
We define stereo billboards as finding an optimal common plane
v, from which a pair of consistent homographies can be computed.
Figure 6 sketches a particular configuration. We denote pixels of
a segmented object in the left and right source images as li and ri

respectively, where li and ri are homogeneous pixel coordinates,
and each pixel li, and ri has associated 3D points xl

i and xr
i . For

a given plane parameterization we can project the points xl
i and xr

i

onto the plane p = (vT , 1) resulting in x̃l
i and x̃r

i , such that,

vT x̃l
i + 1 = 0 P lx̃l

i = li,

vT x̃r
i + 1 = 0 P r x̃r

i = ri (6)

where P l and P r denote the camera projection matrices for the
source image pairs.

(a) Direct composite

(d) Dynamic fitting(c) No stereo volume

(b) Fixed least square

Figure 7: (a) Direct composite result with source images from Fig-
ure 4. (b) Result with least square fitted plane proxy. (c) Same as
(b), but now using only a single image for both left and right eye
emphasizes the ”cardboard” effect. (d) Our stereo billboards using
dynamically optimized common plane. Our result better preserves
the stereo volume.

Given Equation 2 and 5 we can define T(x) = TA(RF (x)). We can
then solve the following minimization problem:

v∗= argminv

∑
i

(
‖P̂ lT(xl

i)− P̂ lT(x̃l
i)‖2 +

‖P̂ rT(xr
i )− P̂ rT(x̃r

i )‖2
)
, (7)

where P̂ l and P̂ r denote the camera projection matrices for the tar-
get image pairs. Equation 7 aims to find the optimal common plane
which minimizes the image space difference between the original
points and the plane approximated points, in order to faithfully rep-
resent the stereo object during rendering. Figure 7 compares direct
compositing, straightforward least squares fitting, and our common
plane optimization of Equation 7. Stereo billboards can better pre-
serve the stereo volume of the object.
To solve Equation 7 in the presence of inaccuracies in the dispar-
ity map, we incorporate an outlier removal step by performing an
erosion on the 2D image pixels and remove the corresponding 3D
points. While this does not guarantee that all outliers will be re-
moved, in practice we found that the resulting common planes that
were fitted to the remaining points gave acceptable results.

3.3.4 Occlusion

Composition of pasted objects behind other objects requires the cor-
rect handling of occlusions. Furthermore each segmented object
has an associated alpha matte for handling the mixed pixels along
the segmentation boundaries. Therefore, to ensure the correct or-
der for occlusions and transparencies in rendering, we have to per-
form depth sorting on the objects. Methods that require per-pixel
depth values for depth sorting, e.g., depth peeling [Mammen 1989],
lead to interweaving objects due to the inaccuracies in the computed
depth maps. We instead use the planar proxies of Section 3.3.3 for
depth sorting. The overhead of having to recompute the proxy or-
dering is negligible since we typically only have a limited number
of planes to consider in the ordering. We can interactively move the
pasted layers while correctly handling the occlusions for the com-
posite, see Section 4 for more details.
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Source

(a)

(b)

(d) (e)

Target

Transform
T(x)

(c)

Target

Left eye Right eye

Stereo
billboard

planeLeft object points
Left plane points
Right object points
Right plane points

Reprojection
P^

Source

Target

(partial)
Object

Figure 6: This figure illustrates the computation of the common plane as the planar proxy geometry. We show pixels belonging to the left
(red) and right (blue) source images with their corresponding 3D points. (a) Source pixels are back-projected onto a current estimate for a
common plane (green). (b) Close-up of pixels projected onto the current common plane. (c) We use the plane proxy to reposition the object
from the source to the target scene. (d) Transformed 3D points are projected onto the target left and right image. (e) Transformed 3D plane
points projected onto target left and right image. The optimal common plane minimizes the difference between projected points in (d) and (e).

(a) No shadow (c) Depth map(b) With shadow

Figure 8: (a) Even objects with the same orientation, when copied
& pasted into the same scene, will appear to be floating in the ab-
sence of contact shadows. (b) Synthesized contact shadows gener-
ated with our method. (c) Depth map used for shadow synthesis.
Note: we only render the selected object and the underlying sur-
faces into the depth buffer.

3.3.5 Shadow Synthesis

Shadows are an important cue for judging contact between surfaces.
In the absence of knowledge about the light direction in the scene,
we approximate contact shadows by using screen-space volumet-
ric ambient occlusion [Loos and Sloan 2010]. A depth map of the
composite scene is required to synthesize the shadows. We could
use the point clouds to obtain depth images, but this would be in-
consistent with the stereo billboard warp. Therefore, we obtain dis-
parities for the composited scene directly from the warp instead and
achieve more accurate shadows. Let (li, ri) and xl

i and xr
i denote

a pair of corresponding points on the selected object in the source
images and their associated 3D points respectively. Using v∗ from
Equation 7 we can project xl

i and xr
i onto v∗ to obtain x̃l

i and x̃r
i ,

and compute l̂i = P̂ lT(x̃l
i) and r̂i = P̂ rT(x̃r

i ). The image points
(̂li, r̂i) denote the new positions of (li, ri) in the composite target
images. We then render the disparity value r̂i� l̂i at pixel l̂i into the
depth buffer of the left composite image, and vice versa for the right
one. This method better preserves contours in the depth map and is
also more consistent with the stereo volume. Synthesized shadows
therefore exhibit less noise and better approximate the object. A
computed depth map with our method is shown in Figure 8c.

(a) Direct composite (b) Our result

Figure 9: (a) Direct composite result of the same object copied
from different source images. Without alignment the composition
looks unnatural. (b) Our alignment method can construct a more
plausible composite automatically. Furthermore, we also support
automatic shadow synthesis, adding to the plausibility.

Figure 10: The objects can be arranged onto different planes in the
target scene.

4 Results
Figure 9 demonstrates our local surface orientation alignment (Sec-
tion 3.3.1). The same object is copied from different source images
in Figure 15, and the object has a different orientation and scale in
each source image. Without alignment the orientation and scale of
the objects are not adjusted. Our alignment method on the other
hand results in a (correct) composition, where the object appears
to have been copied from the same source. The synthesized shad-
ows further add to the believability of the composition. Figure 10
shows another example of our alignment. We used the color trans-
fer method described by Reinhard et al. [Reinhard et al. 2001] in
all the results presented in this paper.
Figure 11 shows that our system can handle multiple objects com-
posed in depth. Occlusions are continuously updated while the user
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(a) Direct composite (b) Our result

(f) Point clouds(e) No rotation(d) No shadow(c) Ours

Figure 11: (a) The user can roughly place the objects into the tar-
get scene. (b) Our system will automatically arrange the objects
in a right perspective and depth order. (c) Close-up of a region in
(b). (d) Without shadow, the object appears to be floating. (e) With-
out the rotation constraint, the copied object edges are not parallel
with target object edges, resulting in unnatural results. (f) Rendered
results with point clouds show artifacts due to inaccurate depth re-
construction and missing data.

determines a final location of the copied object in the target. Fur-
thermore, by comparing Figure 11c with Figures 11d - f it is clear
that shadow synthesis, local surface orientation alignment, rotation
constraints, and stereo billboards significantly add to the quality of
the result.
Figure 12 shows several more results of compositions with objects
copied from the source images shown in Figure 15. The source ob-
jects can be copied from a wide variety of different source images.
The resulting compositions look plausible with respect to the tar-
gets’ scene composition. However, especially for the center image
in Figure 12, the color difference between the source object and
target scene breaks the believability of the composition.

5 Discussion and Future Work
We have proposed a system and methods which build on previous
work for computing depth maps and performing segmentations. To
address inaccuracies in the current depth maps, we have specifically
aimed to make the segmentation refinement, segmentation propaga-
tion, alignment, stereo billboards, and occlusion methods robust to
those inaccuracies. As explained, this is largely achieved by ap-
proximating the objects’ associated 3D point clouds with proxy ge-
ometry. For simplicity, we currently use planar proxy geometry.
Approximating geometry with planar proxies has its limitations.
Planar proxies do not preserve detail depth structure, such as the
grass surface in Figure 13a. As a result of the absence of partial
occlusions the copied object appears to float. Large orientation
changes using planar proxies can introduce distortions. An exam-
ple of this is shown in Figure 13b. The copied object (left person)
appears distorted compared to the person in the target image. An al-
ternative would be to use in-painting [Wang et al. 2008]. However,
high quality in-painting is a difficult task and therefore typically
limited to only paint in relatively small areas.
Another important problem is that planar stereo billboards may no
longer respect the epipolar geometry, which could result in verti-
cal disparities that could strongly interfere with the stereopsis. To

(a) No partial occlusion (b) Large orientation change

Figure 13: (a) The lack of fine depth structures after planar approx-
imation makes the copied object appear to float. (b) Large warps
with planar proxy geometry leads to distortions of the copied (left)
object.

evaluate the amount of vertical disparity that is introduced, we use
an object which is not well represented by a plane, shown in Fig-
ure 14. The object is copied from the source scene into two target
scenes with the support surface at a different orientation: 10◦ and
35◦. For comparison we also show the ground truth images for each
case. The vertical disparities for the 10◦ case are around 0.8% of
the object height, and for the 35◦ case around 2.4%. The reader can
evaluate that even for the 35◦ orientation change the stereo images
can still be comfortably fused. The maximal vertical disparity for
all other result images used in this paper is around 0.5%. Although
the vertical disparity tolerance varies depending on scene content,
for comparison Fukuda et al. [2009] report a tolerance of 45 arcmin
for random dot stereograms. Given a display at 100 dpi, viewed at
a distance of 50 cm, this amounts to a vertical disparity tolerance of
about 26 pixels. The vertical disparity for our 35◦ case is about 10
pixels. This is well within the reported tolerance, however a more
thorough analysis should be conducted. In summary, our system
produces plausible results for moderate orientation changes. The
limitations for larger orientation changes could be overcome with
more accurate depth reconstruction, but this problem of obtaining
more accurate depth maps is notoriously difficult to solve robustly.
Stereo billboards help to preserve the stereo volume of the copied
source object. However, if the initial depth volume in the source
image is relatively flat, such as for narrow baselines (or interocu-
lar), stereo billboards will not be able to increase the stereo vol-
ume in the target. Furthermore, for large differences in baseline
between source and target, stereo billboards may not be able to pre-
serve volume. In particular achieving artistic stereo effects such as
hypostereo (gigantism) and hyperstereo (miniaturization) [Koppal
et al. 2010] in copy & paste is an interesting topic for future work.
We may be able to exploit the work by Lang et al. [2010] in such
scenarios.
For plausible appearance of copied objects, we approximate contact
shadows to avoid objects from appearing to float. However, illumi-
nation differences between the source and target images is a larger
problem that we did not address in this paper. This problem is not
specific to 3D, see for example [Lalonde et al. 2007]. Although we
use the color transfer method described by Reinhard et al. [Reinhard
et al. 2001], this does not always give the desired results. For truly
plausible appearance of pasted objects, more information about the
scene illumination should be recovered, and exploited to relight the
objects. The depth map could then also be used for shadow cast-
ing and light attenuation. However, relighting is an active area of
research with no good solution to date.
Segmentations and disparity maps are closely related in that seg-
mentation boundaries often correspond to depth discontinuities.
Some disparity map methods compute an initial segmentation as
a starting point for the disparity computation [Zitnick and Kang
2007]. However, in our current system segmentations and dispar-
ities are computed more or less independently. In areas where the
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Figure 12: Three examples of differently composed scenes using objects copied from the source images of Figure 15.

35° ground truth35° synthesized10° ground truth10° synthesizedsource image

Figure 14: Comparison of object not well represented by a plane under different orientations using stereo billboards. Two orientations are
shown, together with their ground truth images.

user needs to refine the initial segmentation in our system, the dis-
parities are likely incorrect, and it would thus be desirable to refine
the disparities for these areas simultaneously. Handling mixed pix-
els along the boundaries may also benefit from simultaneous refine-
ment [Taguchi et al. 2008].
With the rapid growth in popularity of 3D the need for stereoscopic
3D compositing tools in general will grow as well. A desirable ex-
tension to this work would be 3D copy & paste for stereoscopic
video. Depth reconstruction, alignment, occlusions, and depth
composition will now all have to be done for dynamic objects and
scenes. This would be an interesting area for further exploration.

Figure 15: Source images for copy & paste.

6 Conclusions
We have presented an end-to-end system for 3D copy & paste,
which extends 2D copy & paste editing for still images to stereo-
scopic 3D. We found that for stereoscopic input images captured
under casual conditions, the reconstructed depth maps are rarely
accurate enough for direct artifact-free composition. Furthermore,
since composition of objects is done in 3D, one has to ensure cor-
rect and comfortable stereo viewing of the resulting composite. Our
main insight is that inaccurate depth maps can be appropriately ap-
proximated with simpler geometry, while still achieving high qual-
ity compelling composition results and convincing stereo viewing.
To this end we have introduced stereo billboards, which approxi-
mate the reprojection of reconstructed geometry using planar warps
with optimal planar proxy geometries. In addition, to increase the
realism of the results, we support automatic alignment of copied
objects, occlusion handling, and the generation of contact shad-
ows. We discussed several limitations of our proposed methods
such as distortions due to large warps, vertical disparities, and han-
dling stereo baseline changes, which are interesting avenues of fu-
ture work. Finally, we hope that our system serves as a start in the
exploration of more general stereoscopic 3D compositing tools, in
particular for stereoscopic 3D video editing.
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