
Surfels: Surface Elements as Rendering Primitives

Hanspeter Pfister � Matthias Zwicker y Jeroen van Baar� Markus Grossy

Figure 1: Surfel rendering examples.

Abstract
Surface elements (surfels) are a powerful paradigm to efficiently
render complex geometric objects at interactive frame rates. Un-
like classical surface discretizations, i.e., triangles or quadrilateral
meshes, surfels are point primitives without explicit connectivity.
Surfel attributes comprise depth, texture color, normal, and oth-
ers. As a pre-process, an octree-based surfel representation of a
geometric object is computed. During sampling, surfel positions
and normals are optionally perturbed, and different levels of texture
colors are prefiltered and stored per surfel. During rendering, a hi-
erarchical forward warping algorithm projects surfels to a z-buffer.
A novel method called visibility splatting determines visible sur-
fels and holes in the z-buffer. Visible surfels are shaded using tex-
ture filtering, Phong illumination, and environment mapping using
per-surfel normals. Several methods of image reconstruction, in-
cluding supersampling, offer flexible speed-quality tradeoffs. Due
to the simplicity of the operations, the surfel rendering pipeline is
amenable for hardware implementation. Surfel objects offer com-
plex shape, low rendering cost and high image quality, which makes
them specifically suited for low-cost, real-time graphics, such as
games.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation – Viewing Algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques – Graphics Data Structures and Data
Types.

Keywords: Rendering Systems, Texture Mapping.

�MERL, Cambridge, MA. Email: [pfister,jeroen]@merl.com
yETH Zürich, Switzerland. Email: [zwicker,gross]@inf.ethz.ch

1 Introduction
3D computer graphics has finally become ubiquitous at the con-
sumer level. There is a proliferation of affordable 3D graphics hard-
ware accelerators, from high-end PC workstations to low-priced
gamestations. Undoubtedly, key to this success is interactive com-
puter games that have emerged as the “killer application” for 3D
graphics. However, interactive computer graphics has still not
reached the level of realism that allows a true immersion into a
virtual world. For example, typical foreground characters in real-
time games are extremely minimalistic polygon models that often
exhibit faceting artifacts, such as angular silhouettes.

Various sophisticated modeling techniques, such as implicit sur-
faces, NURBS, or subdivision surfaces, allow the creation of 3D
graphics models with increasingly complex shapes. Higher order
modeling primitives, however, are eventually decomposed into tri-
angles before being rendered by the graphics subsystem. The trian-
gle as a rendering primitive seems to meet the right balance between
descriptive power and computational burden [7]. To render realis-
tic, organic-looking models requires highly complex shapes with
ever more triangles, or, as Alvy Ray Smith puts it: “Reality is 80
million polygons” [26]. Processing many small triangles leads to
bandwidth bottlenecks and excessive floating point and rasteriza-
tion requirements [7].

To increase the apparent visual complexity of objects, texture
mapping was introduced by Catmull [3] and successfully applied by
others [13]. Textures convey more detail inside a polygon, thereby
allowing larger and fewer triangles to be used. Today’s graphics
engines are highly tailored for high texture mapping performance.
However, texture maps have to follow the underlying geometry of
the polygon model and work best on flat or slightly curved surfaces.
Realistic surfaces frequently require a large number of textures that
have to be applied in multiple passes during rasterization. And phe-
nomena such as smoke, fire, or water are difficult to render using
textured triangles.

In this paper we propose a new method of rendering objects with
rich shapes and textures at interactive frame rates. Our rendering
architecture is based on simple surface elements (surfels) as ren-
dering primitives. Surfels are point samples of a graphics model. In
a preprocessing step, we sample the surfaces of complex geometric
models along three orthographic views. At the same time, we per-
form computation-intensive calculations such as texture, bump, or
displacement mapping. By moving rasterization and texturing from



Sampling and
Texture Prefiltering

3-to-1 Reduction
(optional)

Block
Culling

Forward
Warping

Visibility
Splatting

Deferred
Shading

Texture 
Filtering

Image Reconstruction
and Antialiasing

Surfel 
LDC Tree

Reduced
LDC Tree

Geometry
a)

b)

Figure 2: Algorithm overview: a) Preprocessing. b) Rendering of the hierarchical LDC tree.

the core rendering pipeline to the preprocessing step, we dramati-
cally reduce the rendering cost.

From a modeling point of view, the surfel representation pro-
vides a mere discretization of the geometry and hence reduces the
object representation to the essentials needed for rendering. By
contrast, triangle primitives implicitly store connectivity informa-
tion, such as vertex valence or adjacency – data not necessarily
available or needed for rendering. In a sense, a surfel relates to
what Levoy and Whitted call the lingua franca of rendering in their
pioneering report from 1985 [18].

Storing normals, prefiltered textures, and other per surfel data
enables us to build high quality rendering algorithms. Shading
and transformations applied per surfel result in Phong illumination,
bump, and displacement mapping, as well as other advanced ren-
dering features. Our data structure provides a multiresolution ob-
ject representation, and a hierarchical forward warping algorithm
allows us to estimate the surfel density in the output image for
speed-quality tradeoffs.

The surfel rendering pipeline complements the existing graphics
pipeline and does not intend to replace it. It is positioned between
conventional geometry-based approaches and image-based render-
ing and trades memory overhead for rendering performance and
quality. The focus of this work has been interactive 3D applications,
not high-end applications such as feature films or CAD/CAM. Sur-
fels are not well suited to represent flat surfaces, such as walls or
scene backgrounds, where large, textured polygons provide better
image quality at lower rendering cost. However, surfels work well
for models with rich, organic shapes or high surface details and for
applications where preprocessing is not an issue. These qualities
make them ideal for interactive games.

2 Related Work
The use of points as rendering primitives has a long history in com-
puter graphics. As far back as 1974, Catmull [3] observed that ge-
ometric subdivision may ultimately lead to points. Particles were
subsequently used for objects that could not be rendered with ge-
ometry, such as clouds, explosions, and fire [23]. More recently,
image-based rendering has become popular because its rendering
time is proportional to the number of pixels in the source and out-
put images and not the scene complexity.

Visually complex objects have been represented by dynamically
generated image sprites [25], which are quick to draw and largely
retain the visual characteristics of the object. A similar approach
was used in the Talisman rendering system [27] to maintain high
and approximately constant frame rates. However, mapping objects
onto planar polygons leads to visibility errors and does not allow for
parallax and disocclusion effects. To address these problems, sev-
eral methods add per-pixel depth information to images, variously
called layered impostors [24], sprites with depth, or layered depth
images [25], just to name a few. Still, none of these techniques pro-
vide a complete object model that can be illuminated and rendered
from arbitrary points of view.

Some image-based approaches represent objects without explic-
itly storing any geometry or depth. Methods such as view inter-
polation and Quicktime VR [5] or plenoptic modeling [21] cre-
ate new views from a collection of 2D images. Lightfield [17] or
lumigraph [9] techniques describe the radiance of a scene or ob-
ject as a function of position and direction in a four- or higher-

dimensional space, but at the price of considerable storage over-
head. All these methods use view-dependent samples to represent
an object or scene. However, view-dependent samples are ineffec-
tive for dynamic scenes with motion of objects, changes in material
properties, and changes in position and intensities of light sources.

The main idea of representing objects with surfels is to describe
them in a view-independent, object-centered rather than image-
centered fashion. As such, surfel rendering is positioned between
geometry rendering and image-based rendering. In volume graph-
ics [16], synthetic objects are implicitly represented with surface
voxels, typically stored on a regular grid. However, the extra third
dimension of volumes comes at the price of higher storage require-
ments and longer rendering times. In [8], Perlin studies “surflets,”
a flavor of wavelets that can be used to describe free-form implicit
surfaces. Surflets have less storage overhead than volumes, but ren-
dering them requires lengthy ray casting.

Our research was inspired by the following work: Animatek’s
Caviar player [1] provides interactive frame rates for surface voxel
models on a Pentium class PC, but uses simplistic projection and
illumination methods. Levoy and Whitted [18] use points to model
objects for the special case of continuous, differentiable surfaces.
They address the problem of texture filtering in detail. Max uses
point samples obtained from orthographic views to model and ren-
der trees [20]. Dally et al. [6] introduced the delta tree as an object-
centered approach to image-based rendering. The movement of the
viewpoint in their method, however, is still confined to particular
locations. More recently, Grossman and Dally [12] describe a point
sample representation for fast rendering of complex objects. Chang
et al. [4] presented the LDI tree, a hierarchical space-partitioning
data structure for image-based rendering.

We extend and integrate these ideas and present a complete point
sample rendering system comprising an efficient hierarchical repre-
sentation, high quality texture filtering, accurate visibility calcula-
tions, and image reconstruction with flexible speed-quality trade-
offs. Our surfel rendering pipeline provides high quality rendering
of exceedingly complex models and is amenable for hardware im-
plementation.

3 Conceptual Overview
Similar to the method proposed by Levoy and Whitted [18], our
surfel approach consists of two main steps: sampling and surfel
rendering. Sampling of geometry and texture is done during prepro-
cessing, which may include other view-independent methods such
as bump and displacement mapping. Figure 2 gives a conceptual
overview of the algorithm.

The sampling process (Section 5) converts geometric objects and
their textures to surfels. We use ray casting to create three orthog-
onal layered depth images (LDIs) [25]. The LDIs store multiple
surfels along each ray, one for each ray-surface intersection point.
Lischinski and Rappaport [19] call this arrangement of three or-
thogonal LDIs a layered depth cube (LDC). An important and novel
aspect of our sampling method is the distinction between sampling
of shape, or geometry, and shade, or texture color. A surfel stores
both shape, such as surface position and orientation, and shade,
such as multiple levels of prefiltered texture colors. Because of the
similarities to traditional texture mipmaps we call this hierarchical
color information a surfel mipmap.



From the LDC we create an efficient hierarchical data structure
for rendering. Chang et al.[4] introduce the LDI tree, an octree with
an LDI attached to each octree node. We use the same hierarchical
space-partitioning structure, but store an LDC at each node of the
octree (Section 6). Each LDC node in the octree is called a block.
We call the resulting data structure the LDC tree. In a step called
3-to-1 reduction we optionally reduce the LDCs to single LDIs on
a block-by-block basis for faster rendering.

The rendering pipeline (Section 7) hierarchically projects blocks
to screen space using perspective projection. The rendering is ac-
celerated by block culling [12] and fast incremental forward warp-
ing. We estimate the projected surfel density in the output image to
control rendering speed and quality of the image reconstruction. A
conventional z-buffer together with a novel method called visibil-
ity splatting solves the visibility problem. Texture colors of visible
surfels are filtered using linear interpolation between appropriate
levels of the surfel mipmap. Each visible surfel is shaded using,
for example, Phong illumination and reflection mapping. The final
stage performs image reconstruction from visible surfels, including
hole filling and antialiasing. In general, the resolution of the output
image and the resolution of the z-buffer do not have to be the same.

4 Definition of a Surfel
We found the term surfel as an abbreviation for surface element
or surface voxel in the volume rendering and discrete topology
literature. Herman [15] defines a surfel as an oriented (n � 1)-
dimensional object in R

n. For n = 3, this corresponds to an ori-
ented unit square (voxel face) and is consistent with thinking of
voxels as little cubes. However, for our discussion we find it more
useful to define surfels as follows:

A surfel is a zero-dimensional n-tuple with shape and shade at-
tributes that locally approximate an object surface.

We consider the alternative term, point sample, to be too general,
since voxels and pixels are point samples as well.

5 Sampling
The goal during sampling is to find an optimal surfel representa-
tion of the geometry with minimum redundancy. Most sampling
methods perform object discretization as a function of geometric
parameters of the surface, such as curvature or silhouettes. This
object space discretization typically leads to too many or too few
primitives for rendering. In a surfel representation, object sampling
is aligned to image space and matches the expected output resolu-
tion of the image.

5.1 LDC Sampling
We sample geometric models from three sides of a cube into three
orthogonal LDIs, called a layered depth cube (LDC) [19] or block.
Figure 3 shows an LDC and two LDIs using a 2D drawing. Ray

LDI 1 surfels
LDI 2 surfels

LDI 1

LD
I 2

Figure 3: Layered depth cube sampling (shown in 2D).

casting records all intersections, including intersections with back-
facing surfaces. At each intersection point, a surfel is created with
floating point depth and other shape and shade properties. Perturba-
tion of the surface normal or of the geometry for bump and displace-
ment mapping can be performed on the geometry before sampling
or during ray casting using procedural shaders.

Alternatively, we could sample an object from predetermined di-
rections on a surrounding convex hull using orthographic depth im-
ages [6, 12]. However, combining multiple reference images and
eliminating the redundant information is a difficult problem [21],
and sampling geometry with reference images works best for
smooth and convex objects. In addition, LDC sampling allows us to
easily build a hierarchical data structure, which would be difficult
to do from dozens of depth images.

5.2 Adequate Sampling Resolution
Given a pixel spacing of h0 for the full resolution LDC used for
sampling, we can determine the resulting sampling density on the
surface. Suppose we construct a Delaunay triangulation on the ob-
ject surface using the generated surfels as triangle vertices. As was
observed in [19], the imaginary triangle mesh generated by this
sampling process has a maximum sidelength smax of

p
3h0. The

minimum sidelength smin is 0 when two or three sampling rays
intersect at the same surface position.

Similarly to [12], we call the object adequately sampled if we
can guarantee that at least one surfel is projected into the support
of each ouptut pixel filter for orthographic projection and unit mag-
nification. That condition is met if smax, the maximum distance
between adjacent surfels in object space, is less than the radius r0rec
of the desired pixel reconstruction filter. Typically, we choose the
LDI resolution to be slightly higher than this because of the effects
of magnification and perspective projection. We will revisit these
observations when estimating the number of projected surfels per
pixel in Section 7.2.

5.3 Texture Prefiltering
A feature of surfel rendering is that textures are prefiltered and
mapped to object space during preprocessing. We use view-
independent texture filtering as in [12]. To prevent view-dependent
texture aliasing we also apply per-surfel texture filtering during ren-
dering (see Sections 7.4 and 7.6).

To determine the extent of the filter footprint in texture space,
we center a circle at each surfel on its tangent plane, as shown in
Figure 4a. We call these circles tangent disks. The tangent disks are

rpre

b)a)

Texture SpaceObject Space

0

Figure 4: Texture prefiltering with tangent disks.

mapped to ellipses in texture space (see Figure 4b) using the pre-
defined texture parameterization of the surface. An EWA filter [14]
is applied to filter the texture and the resulting color is assigned to
the surfel. To enable adequate texture reconstruction, the elliptical
filter footprints in texture space must overlap each other. Conse-
quently, we choose r

0
pre = smax, the maximum distance between

adjacent surfels in object space, as the radius for the tangent disks.
This usually guarantees that the tangent disks intersect each other
in object space and that their projections in texture space overlap.



Grossman and Dally [12] also use view-independent texture fil-
tering and store one texture sample per surfel. Since we use a mod-
ified z-buffer algorithm to resolve visibility (Section 7.3), not all
surfels may be available for image reconstruction, which leads to
texture aliasing artifacts. Consequently, we store several (typically
three or four) prefiltered texture samples per surfel. Tangent disks
with dyadically larger radii rkpre = smax2

k are mapped to texture
space and used to compute the prefiltered colors. Because of its
similarity to mipmapping [13], we call this a surfel mipmap. Fig-
ure 4b shows the elliptical footprints in texture space of consecu-
tively larger tangent disks.

6 Data Structure
We use the LDC tree, an efficient hierarchical data structure, to
store the LDCs acquired during sampling. It allows us to quickly
estimate the number of projected surfels per pixel and to trade ren-
dering speed for higher image quality.

6.1 The LDC Tree
Chang et al. [4] use several reference depth images of a scene to
construct the LDI tree. The depth image pixels are resampled onto
multiple LDI tree nodes using splatting [29]. We avoid these inter-
polation steps by storing LDCs at each node in the octree that are
subsampled versions of the highest resolution LDC.

The octree is recursively constructed bottom up, and its height is
selected by the user. The highest resolution LDC — acquired dur-
ing geometry sampling — is stored at the lowest level n = 0. If the
highest resolution LDC has a pixel spacing of h0, then the LDC at
level n has a pixel spacing of hn = h02

n. The LDC is subdivided
into blocks with user-specified dimension b, i.e., the LDIs in a block
have b2 layered depth pixels. b is the same for all levels of the tree.
Figure 5a shows two levels of an LDC tree with b = 4 using a 2D
drawing. In the figure, neighboring blocks are differently shaded,

b)a)

Figure 5: Two levels of the LDC tree (shown in 2D).

and empty blocks are white. Blocks on higher levels of the octree
are constructed by subsampling their children by a factor of two.
Figure 5b shows level n = 1 of the LDC tree. Note that surfels at
higher levels of the octree reference surfels in the LDC of level 0,
i.e., surfels that appear in several blocks of the hierarchy are stored
only once and shared between blocks.

Empty blocks (shown as white squares in the figure) are not
stored. Consequently, the block dimension b is not related to the
dimension of the highest resolution LDC and can be selected ar-
bitrarily. Choosing b = 1 makes the LDC tree a fully volumetric
octree representation. For a comparison between LDCs and vol-
umes see [19].

6.2 3-to-1 Reduction
To reduce storage and rendering time it is often useful to optionally
reduce the LDCs to one LDI on a block-by-block basis. Because
this typically corresponds to a three-fold increase in warping speed,
we call this step 3-to-1 reduction. First, surfels are resampled to
integer grid locations of ray intersections as shown in Figure 6.
Currently we use nearest neighbor interpolation, although a more

resampled surfels
on grid locations

LDI 1 surfels
LDI 2 surfels

Figure 6: 3-to-1 reduction example.

sophisticated filter, e.g., splatting as in [4], could easily be imple-
mented. The resampled surfels of the block are then stored in a
single LDI.

The reduction and resampling process degrades the quality of
the surfel representation, both for shape and for shade. Resampled
surfels from the same surface may have very different texture col-
ors and normals. This may cause color and shading artifacts that
are worsened during object motion. In practice, however, we did
not encounter severe artifacts due to 3-to-1 reduction. Because our
rendering pipeline handles LDCs and LDIs the same way, we could
store blocks with thin structures as LDCs, while all other blocks
could be reduced to single LDIs.

As in Section 5.2, we can determine bounds on the surfel density
on the surface after 3-to-1 reduction. Given a sampling LDI with
pixel spacing h0, the maximum distance between adjacent surfels
on the object surface is smax =

p
3h0, as in the original LDC tree.

The minimum distance between surfels increases to smin = h0

due to the elimination of redundant surfels, making the imaginary
Delaunay triangulation on the surface more uniform.

7 The Rendering Pipeline
The rendering pipeline takes the surfel LDC tree and renders it us-
ing hierarchical visibility culling and forward warping of blocks.
Hierarchical rendering also allows us to estimate the number of pro-
jected surfels per output pixel. For maximum rendering efficiency,
we project approximately one surfel per pixel and use the same res-
olution for the z-buffer as in the output image. For maximum image
quality, we project multiple surfels per pixel, use a finer resolution
of the z-buffer, and high quality image reconstruction.

7.1 Block Culling
We traverse the LDC tree from top (the lowest resolution blocks)
to bottom (the highest resolution blocks). For each block, we first
perform view-frustum culling using the block bounding box. Next,
we use visibility cones, as described in [11], to perform the equiv-
alent of backface culling of blocks. Using the surfel normals, we
precompute a visibility cone per block, which gives a fast, con-
servative visibility test: no surfel in the block is visible from any
viewpoint within the cone. In contrast to [11], we perform all visi-
bility tests hierarchically in the LDC tree, which makes them more
efficient.

7.2 Block Warping
During rendering, the LDC tree is traversed top to bottom [4]. To
choose the octree level to be projected, we conservatively estimate
for each block the number of surfels per pixel. We can choose one
surfel per pixel for fast rendering or multiple surfels per pixel for
supersampling. For each block at tree level n, the number of sur-
fels per pixel is determined by i

n

max, the maximum distance be-
tween adjacent surfels in image space. We estimate inmax by divid-
ing the maximum length of the projected four major diagonals of
the block bounding box by the block dimension b. This is correct
for orthographic projection. However, the error introduced by using
perspective projection is small because a block typically projects to
a small number of pixels.

For each block, inmax is compared to the radius r0rec of the de-
sired pixel reconstruction filter. r

0
rec is typically

p
2

2
so, where so



is the sidelength of an output pixel. If inmax of the current block
is larger than r

0
rec then its children are traversed. We project the

block whose i
n

max is smaller than r
0
rec, rendering approximately

one surfel per pixel. Note that the number of surfels per pixel can
be increased by requiring that inmax is a fraction of r0rec. The result-
ing inmax is stored as imax with each projected surfel for subsequent
use in the visibility testing and the image reconstruction stages. The
radius of the actual reconstruction filter is rrec = max(r0rec; imax)
(see Section 7.6).

To warp a block to screen space we use the optimized incre-
mental block warping by Grossman and Dally, presented in detail
in [11]. Its high efficiency is achieved due to the regularity of LDCs.
It uses only 6 additions, 3 multiplications, and 1 reciprocal per sam-
ple. The LDIs in each LDC block are warped independently, which
allows us to render an LDC tree where some or all blocks have been
reduced to single LDIs after 3-to-1 reduction.

7.3 Visibility Testing
Perspective projection, high z-buffer resolution, and magnification
may lead to undersampling or holes in the z-buffer. A z-buffer pixel
is a hole if it does not contain a visible surfel or background pixel
after projection. Holes have to be marked for image reconstruction.
Each pixel of the z-buffer stores a pointer to the closest surfel and
the current minimum depth. Surfel depths are projected to the z-
buffer using nearest neighbor interpolation.

To correctly resolve visibility in light of holes, we scan-convert
the orthographic projection of the surfel tangent disks into the z-
buffer. The tangent disks have a radius of rnt = smax2

n, where
smax is the maximum distance between adjacent surfels in object
space and n is the level of the block. We call this approach visibility
splatting, shown in Figure 7. Visibility splatting effectively sepa-

w

h

amax

amin

N

Approximate
Bounding Box

z-BufferObject Space

b)a)

y

xrt
n

Figure 7: Visibility splatting.

rates visibility calculations and reconstruction of the image, which
produces high quality images and is amenable to hardware imple-
mentation [22].

After orthographic projection, the tangent disks form an ellipse
around the surfel, as shown in Figure 7b. We approximate the el-
lipse with a partially axis-aligned bounding box, shown in red. The
bounding box parallelogram can be easily scan-converted, and each
z-buffer pixel is filled with the appropriate depth (indicated by the
shaded squares in the figure), depending on the surfel normal N .
This scan conversion requires only simple setup calculations, no
interpolation of colors, and no perspective divide.

The direction of the minor axis amin of the projected ellipse is
parallel to the projection of the surfel normal N . The major axis
amax is orthogonal to amin. The length of amax is the projection
of the tangent disk radius rnt , which is approximated by imax. This
approximation takes the orientation and magnification of the LDC
tree during projection into account. Next, we calculate the coordi-
nate axis that is most parallel to amin (the y-axis in Figure 7). The
short side of the bounding box is axis aligned with this coordinate
axis to simplify scan conversion. Its height h is computed by in-
tersecting the ellipse with the coordinate axis. The width w of the

bounding box is determined by projecting the vertex at the inter-
section of the major axis and the ellipse onto the second axis (the
x-axis in Figure 7).

@z

@x
and @z

@y
are the partial derivatives of the surfel depth z with

respect to the screen x and y direction. They are constant because
of the orthographic projection and can be calculated from the unit
normal N . During scan conversion, the depth at each pixel inside
the bounding box is calculated using @z

@x
and @z

@y
. In addition, we

add a small threshold to each projected z value. The threshold pre-
vents surfels that lie on the foreground surface to be accidentally
discarded. Pixels that have a larger z than the z values of the splat-
ted tangent disk are marked as holes.

If the surface is extremely bent, the tangential planes do not
cover it completely, potentially leaving tears and holes. In addi-
tion, extreme perspective projection makes orthographic projection
a bad approximation to the actual projected tangent disk. In prac-
tice, however, we did not see this as a major problem. If the pro-
jected tangent disk is a circle, i.e., if N is almost parallel to the
viewing direction, the bounding box parallelogram is a bad approx-
imation. In this case, we use a square bounding box instead.

Using a somewhat related approach, Grossman and Dally [12]
use a hierarchical z-buffer for visibility testing. Each surfel is pro-
jected and the hole size around the surfel is estimated. The radius of
the hole determines the level of the hierarchical z-buffer where the
z-depth of the surfel will be set. This can be regarded as visibility
splatting using a hierarchical z-buffer. The advantage is that the vis-
ibility splat is performed with a single depth test in the hierarchical
z-buffer. However, the visibility splat is always square, essentially
representing a tangential disk that is parallel to the image plane. In
addition, it is not necessarily centered around the projected surfel.
To recover from those drawbacks, [12] introduces weights indicat-
ing coverage of surfels. But this makes the reconstruction process
more expensive and does not guarantee complete coverage of hid-
den surfaces.

7.4 Texture Filtering
As explained in Section 5.3, each surfel in the LDC tree stores sev-
eral prefiltered texture colors of the surfel mipmap. During render-
ing, the surfel color is linearly interpolated from the surfel mipmap
colors depending on the object minification and surface orientation.
Figure 8a shows all visible surfels of a sampled surface projected
to the z-buffer. The ellipses around the centers of the surfels mark
the projection of the footprints of the highest resolution texture pre-
filter (Section 5.3). Note that during prefiltering, we try to guar-
antee that the footprints cover the surface completely. In figure 8b

a) b)

sz sz

Figure 8: Projected surfel mipmaps.

the number of samples per z-buffer pixel is limited to one by ap-
plying z-buffer depth tests. In order to fill the gaps appearing in
the coverage of the surface with texture footprints, the footprints of
the remaining surfels have to be enlarged. If surfels are discarded
in a given z-buffer pixel, we can assume that the z-buffer pixels in
the 3x3 neighborhood around it are not holes. Thus the gaps can be
filled if the texture footprint of each surfel covers at least the area of
a z-buffer pixel. Consequently, the ellipse of the projected footprint
has to have a minor radius of

p
2sz in the worst case, where sz is

the z-buffer pixel spacing. But we ignore that worst case and usep
2

2
sz, implying that surfels are projected to z-buffer pixel centers.



Figure 8b shows the scaled texture footprints as ellipses around pro-
jected surfels.

To select the appropriate surfel mipmap level, we use traditional
view-dependent texture filtering, as shown in Figure 9. A circle with

Object Tangent SpaceImage Space

sz

rpre

rpre

k

k+1

Figure 9: Projected pixel coverage.

radius
p
2

2
sz is projected through a pixel onto the tangent plane of

the surface from the direction of the view, producing an ellipse in
the tangent plane. In this calculation, the projection of the circle is
approximated with an orthographic projection. Similar to isotropic
texture mapping, the major axis of the projected tangent space el-
lipse is used to determine the surfel mipmap level. The surfel color
is computed by linear interpolation between the closest two mipmap
levels with prefilter radii rkpre and r

k+1
pre , respectively.

7.5 Shading
The illumination model is usually applied before visibility testing.
However, deferred shading after visibility testing avoids unneces-
sary work. Grossman and Dally [12] perform shading calculations
in object space to avoid transformation of normals to camera space.
However, we already transform the normals to camera space during
visibility splatting (Section 7.3). With the transformed normals at
hand, we use cube reflectance and environment maps [28] to calcu-
late a per-surfel Phong illumination model. Shading with per-surfel
normals results in high quality specular highlights.

7.6 Image Reconstruction and Antialiasing
Reconstructing a continuous surface from projected surfels is fun-
damentally a scattered data interpolation problem. In contrast to
other approaches, such as splatting [29], we separate visibility cal-
culations from image reconstruction [22]. Z-buffer pixels with
holes are marked during visibility splatting. These hole pixels are
not used during image reconstruction because they do not contain
any visible samples. Figure 10 shows the z-buffer after rendering
of an object and the image reconstruction process.

a) b)

sz=so sz
sorrec

rrec

Figure 10: Image reconstruction.

The simplest and fastest approach, shown in Figure 10a, is to
choose the size of an output pixel so to be the same as the z-
buffer pixel size sz . Surfels are mapped to pixel centers using near-
est neighbor interpolation, shown with color squares in the figure.
Holes are marked with a black X. Recall that during forward warp-
ing each surfel stores imax, an estimate of the maximum distance
between adjacent projected surfels of a block. imax is a good esti-
mate for the minimum radius of a pixel filter that contains at least
one surfel. To interpolate the holes, we use a radially symmetric
Gauss filter with a radius rrec slightly larger than imax positioned
at hole pixel centers. Alternatively, to fill the holes we implemented

the pull-push algorithm used by Grossman and Dally [12] and de-
scribed by Gortler et al.[9].

A high quality alternative is to use supersampling, shown in Fig-
ure 10b. The output image pixel size so is any multiple of the z-
buffer pixel size sz . Dotted lines in the figure indicate image-buffer
subpixels. Rendering for supersampling proceeds exactly the same
as before. During image reconstruction we put a Gaussian filter at
the centers of all output pixels to filter the subpixel colors. The ra-
dius of the filter is rrec = max(r0rec; imax). Thus rrec is at least

as large as r0rec =
p
2

2
so, but it can be increased if imax indicates a

low density of surfels in the output image.
It is instructive to see how the color of an output pixel is deter-

mined for regular rendering and for supersampling in the absence
of holes. For regular rendering, the pixel color is found by nearest
neighbor interpolation from the closest visible surfel in the z-buffer.
The color of that surfel is computed by linear interpolation between
two surfel mipmap levels. Thus the output pixel color is calculated
from two prefiltered texture samples. In the case of supersampling,
one output pixel contains the filtered colors of one surfel per z-
buffer subpixel. Thus, up to eight prefiltered texture samples may
contribute to an output pixel for 2�2 supersampling. This produces
image quality similar to trilinear mipmapping.

Levoy and Whitted [18] and Chang et al. [4] use an algorithm
very similar to Carpenter’s A-Buffer [2] with per-pixel bins and
compositing of surfel colors. However, to compute the correct per
pixel coverage in the A-buffer requires projecting all visible sur-
fels. Max [20] uses an output LDI and an A-buffer for high qual-
ity anti-aliasing, but he reports rendering times of 5 minutes per
frame. Our method with hierarchical density estimation, visibility
splatting, and surfel mipmap texture filtering offers more flexible
speed-quality tradeoffs.

8 Implementation and Results
We implemented sampling using the Blue Moon Rendering Tools
(BMRT) ray tracer [10]. We use a sampling resolution of 5122 for
the LDC for 4802 expected output resolution. At each intersec-
tion point, a Renderman shader performs view-independent calcu-
lations, such as texture filtering, displacement mapping, and bump
mapping, and prints the resulting surfels to a file. Pre-processing
for a typical object with 6 LOD surfel mipmaps takes about one
hour.

A fundamental limitation of LDC sampling is that thin struc-
tures that are smaller than the sampling grid cannot be correctly
represented and rendered. For example, spokes, thin wires, or hair
are hard to capture. The rendering artifacts are more pronounced
after 3-to-1 reduction because additional surfels are deleted. How-
ever, we had no problems sampling geometry as thin as the legs and
wings of the wasp shown in Figure 1 and Figure 12.

The surfel attributes acquired during sampling include a surface
normal, specular color, shininess, and three texture mipmap levels.
Material properties are stored as an index into a table. Our system
does currently not support transparency. Instead of storing a normal
we store an index to a quantized normal table for reflection and
environment map shading [28]. Table 1 shows the minimum storage
requirements per surfel. We currently store RGB colors as 32-bit
integers for a total of 20 Bytes per surfel.

Data Storage
3 texture mipmap levels 3� 32 bits
Index into normal table 16 bit
LDI depth value 32 bit
Index into material table 16 bit
Total per sample: 20 Bytes

Table 1: Typical storage requirements per surfel.

Table 2 lists the surfel objects that we used for performance anal-
ysis with their geometric model size, number of surfels, and file size



Figure 11: Tilted checker plane. Reconstruction filter: a) Nearest neighbor. b) Gaussian filter. c) Supersampling.

before and after 3-to-1 reduction. All models use three LODs and
three surfel mipmap levels. The size of the LDC tree is about a
factor of 1.3 larger than the LDC acquired during sampling. This

Data # Polys 3 LDIs 3-to-1 Reduced
Salamander 81 k 112 k / 5 MB 70 k / 3 MB
Wasp 128 k 369 k / 15 MB 204 k / 8 MB
Cab 155 k 744 k / 28 MB 539 k / 20 MB

Table 2: Geometric model sizes and storage requirements (# surfels
/ file size) for full and 3-to-1 reduced LDC trees.

overhead is due to the octree data structure, mainly because of the
pointers from the lower resolution blocks to surfels of the sampled
LDC. We currently do not optimize or compress the LDC tree.

Figure 1 shows different renderings of surfel objects, including
environment mapping and displacement mapping. Figure 12 shows
an example of hole detection and image reconstruction. Visibility
splatting performs remarkably well in detecting holes. However,
holes start to appear in the output image for extreme closeups when
there are less than approximately one surfel per 30 square pixels.

Figure 12: Hole detection and image reconstruction. a) Surfel ob-
ject with holes. b) Hole detection (hole pixels in green). c) Image
reconstruction with a Gaussian filter.

To compare image quality of different reconstruction filters, we
rendered the surfel checker plane shown in Figure 11. There is an
increasing number of surfels per pixel towards the top of the image,
while holes appear towards the bottom for nearest neighbor recon-
struction. However, a checker plane also demonstrates limitations
of the surfel representation. Because textures are applied during
sampling, periodic texture patterns are stored explicitly with the
object instead of by reference. In addition, flat surfaces are much
more efficiently rendered using image space rasterization, where
attributes can be interpolated across triangle spans.

Table 3 shows rendering performance broken down into percent-
ages per major rendering tasks. The frame rates were measured on
a 700 MHz Pentium III system with 256 MB of SDRAM using an
unoptimized C version of our program. All performance numbers
are averaged over one minute of an animation that arbitrarily rotates

Data WRP VIS SHD REC CLR fps
Output image: 256� 256

Salamander 39% 3% 28% 17% 13% 11.2
Wasp 61% 4% 21% 8% 8% 6.0
Cab 91% 2% 5% 1% 1% 2.5

Output image: 480� 480
Salamander 14% 18% 31% 22% 16% 4.6
Wasp 3to1 29% 17% 29% 15% 9% 2.7
Wasp 3LDI 48% 13% 22% 11% 6% 2.0
Wasp SS 15% 22% 28% 18% 16% 1.3
Cab 74% 7% 11% 5% 3% 1.4

Output image: 1024� 1024
Salamander 5% 14% 26% 32% 23% 1.3
Wasp 13% 19% 25% 26% 17% 1.0
Cab 16% 36% 24% 16% 8% 0.6

Table 3: Rendering times with breakdown for warping (WRP), vis-
ibility splatting (VIS), Phong shading (SHD), image reconstruction
(REC), and framebuffer clear (CLR). Reconstruction with pull-push
filter. All models, except Wasp 3LDI, are 3-to-1 reduced. Wasp SS
indicates 2x2 supersampling.

the object centered at the origin. The animation was run at three dif-
ferent image resolutions to measure the effects of magnification and
holes.

Similar to image-based rendering, the performance drops almost
linearly with increasing output resolution. For 2562 or object mini-
fication, the rendering is dominated by warping, especially for ob-
jects with many surfels. For 10242 , or large object magnification,
visibility splatting and reconstruction dominate due to the increas-
ing number of surface holes. The performance difference between
a full LDC tree (Wasp 3LDI) and a reduced LDC tree (Wasp 3to1)
is mainly in the warping stage because fewer surfels have to be
projected. Performance decreases linearly with supersampling, as
shown for 2x2 supersampling at 4802 resolution (Wasp SS). The
same object at 10242 output resolution with no supersampling per-
forms almost identically, except for slower image reconstruction
due to the increased number of hole pixels.

To compare our performance to standard polygon rendering, we
rendered the wasp with 128k polygons and 2.3 MB for nine tex-
tures using a software-only Windows NT OpenGL viewing pro-
gram. We used GL LINEAR MIPMAP NEAREST for texture fil-
tering to achieve similar quality as with our renderer. The average
performance was 3 fps using the Microsoft OpenGL implementa-
tion (opengl32.lib) and 1.7 fps using Mesa OpenGL. Our unopti-
mized surfel renderer achieves 2.7 fps for the same model, which
compares favorably with Mesa OpenGL. We believe that further
optimization will greatly improve our performance.



Choosing the block size b for the LDC tree nodes has an influ-
ence on block culling and warping performance. We found that
a block size of b = 16 is optimal for a wide range of objects.
However, the frame rates remain practically the same for different
choices of b due to the fact that warping accounts for only a fraction
of the overall rendering time.

Because we use a z-buffer we can render overlapping surfel ob-
jects and integrate them with traditional polygon graphics, such as
OpenGL. However, the current system supports only rigid body an-
imations. Deformable objects are difficult to represent with surfels
and the current LDC tree data structure. In addition, if the surfels
do not approximate the object surface well, for example after 3-to-
1 reduction or in areas of high curvature, some surface holes may
appear during rendering.

9 Future Extensions
A major strength of surfel rendering is that in principal we can con-
vert any kind of synthetic or scanned object to surfels. We would
like to extend our sampling approach to include volume data, point
clouds, and LDIs of non-synthetic objects. We believe that substan-
tial compression of the LDC tree can be achieved using run length
encoding or wavelet-based compression techniques. The perfor-
mance of our software renderer can be substantially improved by
using Pentium III SSE instructions. Using an occlusion compat-
ible traversal of the LDC tree [21], one could implement order-
independent transparency and true volume rendering.

Our major goal is the design of a hardware architecture for sur-
fel rendering. Block warping is very simple, involving only two
conditionals for z-buffer tests [11]. There are no clipping calcula-
tions. All framebuffer operations, such as visibility splatting and
image reconstruction, can be implemented using standard rasteri-
zation and framebuffer techniques. The rendering pipeline uses no
inverse calculations, such as looking up textures from texture maps,
and runtime texture filtering is very simple. There is a high degree
of data locality because the system loads shape and shade simul-
taneously and we expect high cache performance. It is also possi-
ble to enhance an existing OpenGL rendering pipeline to efficiently
support surfel rendering.

10 Conclusions
Surfel rendering is ideal for models with very high shape and shade
complexity. As we move rasterization and texturing from the core
rendering pipeline to the preprocessing step, the rendering cost per
pixel is dramatically reduced. Rendering performance is essentially
determined by warping, shading, and image reconstruction — oper-
ations that can easily exploit vectorization, parallelism, and pipelin-
ing.

Our surfel rendering pipeline offers several speed-quality trade-
offs. By decoupling image reconstruction and texture filtering we
achieve much higher image quality than comparable point sample
approaches. We introduce visibility splatting, which is very effec-
tive at detecting holes and increases image reconstruction perfor-
mance. Antialiasing with supersampling is naturally integrated in
our system. Our results demonstrate that surfel rendering is capable
of high image quality at interactive frame rates. Increasing proces-
sor performance and possible hardware support will bring it into the
realm of real-time performance.

11 Acknowledgments
We would like to thank Ron Perry and Ray Jones for many helpful
discussions, Collin Oosterbaan and Frits Post for their contributions
to an earlier version of the system, and Adam Moravanszky and Si-
mon Schirm for developing a surfel demo application. Thanks also
to Matt Brown, Mark Callahan, and Klaus Müller for contributing
code, and to Larry Gritz for his help with BMRT [10]. Finally,
thanks to Alyn Rockwood, Sarah Frisken, and the reviewers for

their constructive comments, and to Jennifer Roderick for proof-
reading the paper.

References
[1] Animatek. Caviar Technology. Web page. http://www.animatek.com/.
[2] L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method. In Computer

Graphics, volume 18 of SIGGRAPH ’84 Proceedings, pages 103–108. July 1984.
[3] E. E. Catmull. A Subdivision Algorithm for Computer Display of Curved Sur-

faces. Ph.D. thesis, University of Utah, Salt Lake City, December 1974.
[4] C.F. Chang, G. Bishop, and A. Lastra. LDI Tree: A Hierarchical Representation

for Image-Based Rendering. In Computer Graphics, SIGGRAPH ’99 Proceed-
ings, pages 291–298. Los Angeles, CA, August 1999.

[5] S. E. Chen. Quicktime VR – An Image-Based Approach to Virtual Environment
Navigation. In Computer Graphics, SIGGRAPH ’95 Proceedings, pages 29–38.
Los Angeles, CA, August 1995.

[6] W. Dally, L. McMillan, G. Bishop, and H. Fuchs. The Delta Tree: An Object-
Centered Approach to Image-Based Rendering. Technical Report AIM-1604, AI
Lab, MIT, May 1996.

[7] M. Deering. Data Complexity for Virtual Reality: Where do all the Triangles
Go? In IEEE Virtual Reality Annual International Symposium (VRAIS), pages
357–363. Seattle, WA, September 1993.

[8] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing & Mod-
eling - A Procedural Approach. AP Professional, second edition, 1994.

[9] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The Lumigraph. In Com-
puter Graphics, SIGGRAPH ’96 Proceedings, pages 43–54. New Orleans, LS,
August 1996.

[10] L. Gritz. Blue Moon Rendering Tools. Web page. http://www.bmrt.org/.
[11] J. P. Grossman. Point Sample Rendering. Master’s thesis, Department of Elec-

trical Engineering and Computer Science, MIT, August 1998.
[12] J. P. Grossman and W. Dally. Point Sample Rendering. In Rendering Techniques

’98, pages 181–192. Springer, Wien, Vienna, Austria, July 1998.
[13] P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics & Applica-

tions, 6(11):56–67, November 1986.
[14] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. Master’s

thesis, University of California at Berkeley, Department of Electrical Engineer-
ing and Computer Science, June 17 1989.

[15] G. T. Herman. Discrete Multidimensional Jordan Surfaces. CVGIP: Graphical
Modeling and Image Processing, 54(6):507–515, November 1992.

[16] A. Kaufman, D. Cohen, and R. Yagel. Volume Graphics. Computer, 26(7):51–
64, July 1993.

[17] M. Levoy and P. Hanrahan. Light Field Rendering. In Computer Graphics,
SIGGRAPH ’96 Proceedings, pages 31–42. New Orleans, LS, August 1996.

[18] M. Levoy and T. Whitted. The Use of Points as Display Primitives. Technical
Report TR 85-022, The University of North Carolina at Chapel Hill, Department
of Computer Science, 1985.

[19] D. Lischinski and A. Rappoport. Image-Based Rendering for Non-Diffuse Syn-
thetic Scenes. In Rendering Techniques ’98, pages 301–314. Springer, Wien,
Vienna, Austria, June 1998.

[20] N. Max. Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-
Buffers. In Rendering Techniques ’96, pages 165–174. Springer, Wien, Porto,
Portugal, June 1996.

[21] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering
System. In Computer Graphics, SIGGRAPH ’95 Proceedings, pages 39–46. Los
Angeles, CA, August 1995.

[22] V. Popescu and A. Lastra. High Quality 3D Image Warping by Separating Vis-
ibility from Reconstruction. Technical Report TR99-002, University of North
Carolina, January 15 1999.

[23] W. T. Reeves. Particle Systems – A Technique for Modeling a Class of Fuzzy
Objects. In Computer Graphics, volume 17 of SIGGRAPH ’83 Proceedings,
pages 359–376. July 1983.

[24] G. Schaufler. Per-Object Image Warping with Layered Impostors. In Rendering
Techniques ’98, pages 145–156. Springer, Wien, Vienna, Austria, June 1998.

[25] J. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered Depth Images. In Com-
puter Graphics, SIGGRAPH ’98 Proceedings, pages 231–242. Orlando, FL, July
1998.

[26] A. R. Smith. Smooth Operator. The Economist, pages 73–74, March 6 1999.
Science and Technology Section.

[27] J. Torborg and J. Kajiya. Talisman: Commodity Real-Time 3D Graphics for the
PC. In Computer Graphics, SIGGRAPH ’96 Proceedings, pages 353–364. New
Orleans, LS, August 1996.

[28] D. Voorhies and J. Foran. Reflection Vector Shading Hardware. In Computer
Graphics, Proceedings of SIGGRAPH 94, pages 163–166. July 1994.

[29] L. Westover. Footprint Evaluation for Volume Rendering. In Computer Graph-
ics, Proceedings of SIGGRAPH 90, pages 367–376. August 1990.


