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Abstract

Many useful programming constructions can be expressedas m
ads. Examples include probabilistic modeling, functioregctive
programming, parsing, and information flow tracking, notrten-
tion effectful functionality like state and I/O. In this pap we
present a type-based rewriting algorithm to make progrargmi
with arbitrary monads as easy as using ML's built-in support
state and 1/0. Developers write programs using monadicegalu
of type m 7 as if they were of typer, and our algorithm inserts
the necessary binds, units, and monad-to-monad morphsthats
the program type checks. Our algorithm, based on Jonesfigdal
types, produces principal types. But principal types ameetones
problematic: the program’s semantics could depend on tbzeh
of instantiation when more than one instantiation is validsuch
situations we are able to simplify the types to remove anyigmb
ity but without adversely affecting typability; thus we canocept
strictly more programs. Moreover, we have proved that tinigph-
fication isefficient(linear in the number of constraints) andher-
ent while our algorithm induces a particular rewriting, allated
rewritings will have the same semantics. We have implenteote
approach for a core functional language and applied it Sstaky
to simple examples from the domains listed above, which seel u
as illustrations throughout the paper.

Categories and Subject Descriptors D.3.2 [Programming lan-
guage§ Language Classifications—Applicative (functional) 1an
guages; F.3.3Jogics and Meanings of Prografastudies of Pro-
gram Constructs—Type structure

General Terms Languages,Theory
Keywords monad, type, rewriting, coherence, coercion

1. Introduction

The research literature abounds with useful programmingtcac-
tions that can be expressed as monads, which consist of adype
structorm and two operationgind andunit:*

bind: Va,3. ma — (a = m ) - m [
unit: Va. o« — m «

Example monads include parsers [13], probabilistic comput
tions [25], functional reactivity [8, 3], and informatiorofl track-

1These operations must respect certain laws; cf. Wadlerf{2@etails.
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ing [26]. In a monadic type system,fluesare given typer then
computationsare given typen 7 for some monad constructot.
For example, an expression of tyg® 7 in Haskell represents
a computation that will produce (if it terminates) a valuetyjie
7 but may perform effectful operations in the process. Hd'skel
Monad type class, which requires theind andunit operations
given above, is blessed with special syntax, tleenotation for
programming with instances of this class.

Moggi [22], Filinksi [11], and others have noted that ML pro-
grams, which are impure and observe a deterministic, galidue
evaluation order, are inherently monadic. For example viige
Az.e can be viewed as having type — m 7’ the argument
type 7 is never monadic becauseis always bound to a value in
e, whereas the return type is monadic because the functioanwh
applied, produces a computation. As such, call-by-valysica
tion and let-binding essentially employ monadic sequemcbut
the monad constructor, and thebind andunit combinators for
sequencing are implicit rather than explicit. In esserfoe gixplicit
10 monad in Haskell is implicit in ML.

While programming with 1/0 in ML is lightweight, program-
ming with other monads is not. For example, suppose we age int
ested in programmingehaviors which are time-varying values, as
in functional reactive programg8, 3]. With the following notation
we indicate that behaviors can be implemented as a monacksexp
sions of typeBeh « represent values of type that change with
time, andbindp andunitp are its monadic operations:

Monad(Beh, bindb, unitb)

As a primitive, functionseconds has typeunit — Beh int, its
result representing the current time in seconds since tbehep\n

ML program usingBeh effectively has two monads: the implicit
monad, which applies to normal ML computations, and the-user
defined monadeh. The former is handled primitively but the latter
requires the programmer to explicitly uséndb, unitb, function
composition, etc., as in the following example:

bindb (bindb (seconds()) (fun s-> unitb (is_even s)))
(fun y-> unitb (if y then 1 else 2))

The type of this entire expression Beh int: it is time-varying,
oscillating between values 1 and 2 every second.

Instead of using tedious explicit syntax, we would like t@ov
load the existing syntax so that monadic constructs areidipl
e.g., as in the following program (call@)

let y = is_even (seconds()) in
if y then 1 else 2

We can see that the programs are structurally related, witihd
corresponding to each let and application, and unit appbetthe
bound and final expressions.

While ML programming with one monad is tedious, program-
ming with more than one is worse. Along with different binedsla
units for each monad, the programmer may have to insert walls



morphismswhich are functions that lift one monad into another.
For example, suppose that along with time-varying expoessike
seconds () we allowed time-varying probability distributions ex-
pressed as a monaBlehPrb « (we show an example of this in
Section 2). Given a morphism from the first monad to the second
i.e., from a time-varying value to a time-varying probaigililistri-
bution, the programmer must insert calls to it in the riglatogls.

This paper presents an algorithm for automatically convgrt
an ML program, likeQ, which makes implicit use of monads, into
one that, likeP, makes explicit use of monads, with binds, units,
and morphisms inserted where needed. Our algorithm ojseasate
part of polymorphic type inference, following an approa@mis
lar to Jones [14], which is the foundation of Haskell's typass
inference. We use the syntactic structure of the prograndeo-i
tify where binds, units, and morphisms may appear. Typeaéniee
introduces a fresh variable for the monad being used at trese
ous points and, as in Jones, we produce qualified types obthe f
Vu.P = 7, wherer contains free type and monad variables, &d
contains morphism constraints. We prove our algorithm pced
principal types.

As it turns out, our basic scheme of inferring principal type
could be encoded within Haskell’s type class inferencerélyn,
e.g., one could define morphisms as instancesMefrghism type
class and then rely on inference to insert them as neces$any.
ever, this algorithm would reject many useful programs dsmpo
tially ambiguous, in particular, those whose types contpian-
tified variables that appear only in the constraifitsbut not in
the typer. In the general setting of Haskell, this is sensible, as
different instantiations of these variables could prodpicegrams
with different semantics. By focusing our attention on numwe
sidestep this problem. We can exploit laws governing thesien
of morphisms to ensure that all potential instantiationsuath vari-
ables areoherenti.e., the program semantics will not change with
different instantiations. As such, our algorithm employknaar-
time strategy to eliminate such variables, thus simpltytime con-
straintsP with no adverse effects on typability.

We have implemented our inference algorithm for a core func-
tional language. We demonstrate its utility by applyingiekam-
ple programs that use monads implementing behaviors, pilaba
tic computations, and parsers (cited above). We also dew&to
example using a family of monads for tracking informatiomfo
of high- and low-security data [7, 26]. We prove that our ri&wg
algorithm produces programs accepted by FlowCaml, a diafec
ML that performs information flow tracking [24], and theregtyow
that rewritten programs are secure (enjoy noninterfergrp.

In summary, this paper presents an extension to ML for menadi
programming, providing the following benefits:

e Developers can define their own monads and program with
them in a direct style, avoiding the tedium of introducingds,
units, and morphisms manually.

e Monadic operations are inserted automatically in conjonct
with a novel type inference algorithm. Our algorithm proelsic

2. Overview

This section presents an overview of our approach through th
development of a few examples. We start by considering desing
user-defined monad and see that this is relatively easy tdldan
Then, we look at handling multiple monads, which requireubke

of morphisms. With these examples we illustrate our typeririce
and rewriting algorithm and discuss its key properties.

2.1 Programming with a single user-defined monad

As mentioned earlier, pure ML computations may be seen as al-
ready employing an implicit monad, e.g., covering pattjaktate,
exceptions, and I/O. We call this implicit monétbt, since it is the
bottom element of our monad hierarchy; in effect, its uni¢r@p
tor is the identity function, and bind is the reverse appicza Our
goal is to exploit the inherent monadic structure of ML tovide
support for programming with multiple, user-defined monadh
the same ease as programming, implicitly, wiht¢. Of course, we
aim to do this without breaking compatibility with ML.

Let us illustrate our idea on an example using the probgbilit
monad [25]. Expressions of typ€rb « describe distributions
over values of typey, with bindp andunitp as its bind and unit
combinators, respectively:

Monad(Prb, bindp, unitp)

The probability monad can be used to define probabilisticetsod
The following programP, based on the classic example due to
Pearl [23], is an example of model code we would like to write:

let rain = flip .5 in

let sprinkler = flip .3 in

let chance = flip .9 in

let grass_is_wet = (rain || sprinkler) && chance in
if grass_is_wet then rain else fail ()

This program uses two functions it does not define:

flip
fail

float — Prb bool
Ya.unit — Prb «

The first introduces distributions1ip(p) is a distribution where
true has probabilityp and false has probabilityl — p. The
secondfail, represents impossibility.

The first four lines ofP define four random variablegain
is true when it is rainingsprinkler is true when the sprinkler
is running;chance is explained below; andrass_is_wet is true
when the grass is wet. The probability distribution for thstlis
dependent on the distributions of the first three: the graseeti if
either it is raining or the sprinkler is running, with an atitatial
bit of uncertainty due tehance: e.g., even with rain, grass under
a tree might be dry. The last line @ implements a conditional
distribution; i.e., the probability that it is raining giv¢hat the grass
is wet. Mathematically, this would be represented with tiota
Pr(rain | grass_is_wet).

Unfortunately, in ML we cannot write the above code directly

qualified types which describe the monads and morphisms usedbecause it is not type-correct. For example, the expressian

by a piece of code, usefully revealing the monadic struabfire
the program to the developer. Exploiting the morphism laves,
efficiently infer general types and produce coherent ravgit

e The system is quite flexible: we have shown, via our prototype
implementation, that it supports many varieties of monaut a
their combination.

The next section presents an overview of our approach; our ma
technical results are contained in Sections 3-5; and aijgits
and related work discussed in Sections 6 and 7, respectively

|| sprinkler applies the| | function, which has typéool —
bool — bool, to rain and sprinkler, which each have type
Prb bool. Fortunately, our system will automatically rewrifeso
that it is type-correct, producing the code given below.

bindp (flip .5) (fun rain->

bindp (flip .3) (fun sprinkler->

bindp (flip .9) (fun chance->

bindp (unitp ((rain || sprinkler) && chance))
(fun grass_is_wet->

if grass_is_wet then unitp rain else fail ()))))



When there is only one user-defined monad to consider, a of rainprb() is lifted into BehPrb float and then bound to the

rewriting such as this one is entirely syntactic. Roughhghelet

is replaced by @indp and each let-bound expression that is not
already monadic is wrapped witthitp. By doing so, we keep to
the monadic structure of sequencing implemented printytitg

ML for its Bot monad, except we have now interposed fhe
monad. Although not shown above, function applicationshare-
dled similarly: we inserbindp on both the left- and right-hand
sides, thereby echoing the call-by-value semantics oftfomap-
plication in ML.

Under this rewriting semantics, we can give a type to the-orig
inal program even though it is not typable in ML—our algomith
infers the typePrb bool for the source program. The types we
infer always have a particular structure that mirrors thenautic
structure of ML. As in Moggi’'s computational lambda calcsilwe
note that inferred function types always have a monadic tgpe
their co-domain and monadic types never appear in negaisie p
tion. This corresponds to the following intuition. Sincdues are
always pure, under a call-by-value semantics, functioniraents
must always be effect free (hence, no monadic types in negati
position). Furthermore, since in ML functions can have tagloy
effects, their co-domains are always monadic.

2.2 Programming with multiple monads

Now suppose we wish to program with both probabilities and
behaviors (introduced in Section 1). Perhaps we would liie t
probability of rain to change with time, e.g., according te t
seasons. Then we can modify (call it P’) so that the argument
to flip is a functionrainprb of type unit — Beh float:

let rain = flip (rainprb ()) in ...

Again, this program fragment is ill-typed, becaufdeip expects a
float but we have passed itBeh float.

If our rewriting system is to be applied, what should be the
type of rain? One might expect it to b&eh (Prb bool), since
it is a time-varying distribution. However, this type is s@msical.
Just as ML does not support data structures containing abesy
(e.g., those having typé&ist (Bot «)) it does not support com-
putations parameterized by non-values, e.g., expressibhge
Bot (Bot «) and, for that matter, typ&eh (Prb «). Therefore,
a programmer must construct a combined moriaeh Prb, along
with morphisms from the individual monads into the combinad,
to ensure that the overall program’s semantics makes s€hsee
are several standard techniques for combining monads Hi&ré,
we can combine them by defining objects of tyBehPrb T as a
stream of distributions over, with the obvious morphisms.

Monad(BehPrb, bindbp, unitbp)
p2bp : Prb > BehPrb
b2bp : Beh > BehPrb

To allow automatic type-directed insertion of morphisme, as-

current valuev1, which is passed tdlip to generate a distribu-
tion. This value is in turn lifted intaBehPrb bool and bound to
booleanrain for the rest of the computation, whose result, of type
Prb bool, is lifted into BehPrb bool by application ofp2bp.

2.3 Properties of type inference and rewriting

Our examples so far have involved inserting known morphjsms
binds, and units, producing monomorphic types. But ouresyst
is more general in that we can rewrite a function to abstiaet t
monads and morphisms it uses. For such functions our digorit
infers qualified types of the formvo.P = 7, whereP is a set

of constraintsm; > m2 where them; could be constant, known
monads, likeBeh, or abstracted, unknown monadshat appear in
the bound type variables (along with the usual type variableg.

For example, the type of

f (g x)
inferred by our system is

Vafyp pap.
(1 >y pu2 > ) = (B — p2y) = (@ — 1 B) — a — py

(where two occurrences @&ot on arrow types have been elided for
readability). The rewritten term will take as arguments@resen-
tation of the monadg, p1, and 2, and two morphism functions
corresponding to the two morphism constraints. Sectionofvsh
that our algorithm infergrincipal typesi.e. most general types.

By restricting the structure of inferred types (e.g., pesit
monadic types), and by providing only a limited form of sybbg,
we obtain morphism constrainidthat can be efficiently solved us-
ing a simple linear-time procedure. A solution of constimadlows
us to instantiate the monadic operators and the morphisrtigein
elaborated term.

Last but not least, our algorithm enjog®herence any two
rewritings of the same program are semantically equival®aid
differently, choosing a particular solution does not aftbe mean-
ing of the program. Coherence allows us to accept prograats th
would otherwise be rejected as ambiguous by related sydteahs
employ qualified types for type inference, e.g., Haskejfsetclass
mechanism. We achieve coherence by taking advantage ablthe f
lowing assumed properties of morphisms:

let compose f g x =

f1,2 0 unity = unito (1)
f1$2 (bindl el 62) = bi’l’Ldz (f1$2 el) (f1,2 e} ez) (2)
fez0fi2=fis (3)
Properties (1-2) are the so-calletbrphism lawsand the third is
the transitivity property.
For instance, the combination d¥eh, Prb, and BehPrb in

the example above leads to constraints that admit sevelid va
solutions. One of these solutions, shown below, directiy &ll the

sume that there is at most one morphism between each pair oflet bindings to theBehPrb monad, instead of lifting parts of the

monads. In general, a morphisffa > : m1 > ms has the type
Yo.ma o — ma o.® (We implicitly consider the unit operation of
monadm as the morphisnBot > m.) Given the above morphisms,
our system rewrite®’ thus:

bindpb (bindpb (b2bp (rainprb ()))
(fun vi-> p2bp (flip v1))) (fun rain->
p2bp (bindp (flip .3) (fun sprinkler-> ...

where . .. is identical to the corresponding part of the rewrit-
ing for P, and the final type isBehPrb bool. Here, the result

2Morphisms (just like the binds and units) are not part of therse
program; as such, they are treated specially and not subjéwe positivity
condition on monadic types.

computation to either th8eh or Prb monads.

bindbp (bindbp (b2bp (rainprb ()))
(fun vi-> p2bp (flip v1))) (fun rain->

(p2bp (flip .3)) (fun sprinkler->

bindbp (p2bp (flip .9)) (fun chance->

bindbp (unitbp ((rain || sprinkler) && chance))
(fun grass_is_wet->

bindpb (fail ()) (fun f->

unitpb (if_ grass_is_wet then rain else £))))))

bindbp

Using the morphism laws, we can show that the two rewritings
are equivalent. However we might argue that the first remgiti
produced by our algorithm, is more precise than this onaitively

it applies morphisms “as late as possible” and uses the ‘eBtip



types T u= o
| T7i..7n (n > 0 is the arity ofT)
| L — M T2

monadic types m = u| M

type variables v = alup

constraints P = m,..,mn

constraint T = miD>me

type schemes o = Vo.P=rT1

environment T’ = | T,co|T,z0

values v z|c|Az.e

expressions e vlerex|letz=erines

Figure 1. Core language syntax.

mi > mo € P

P Em>m (M-Taut) er—— (M-Hyp)
PEmibms PEmabms (M-Trans)
PEmi>ms

PF7T1 ...PFﬂ'n
P"T{'l,...

(M-Many)
) Tn

Figure 2. The constraint entailment relation.

=7 0 = o/
P,ﬁ'z':aﬁ'l 1% gftV(VDl.ﬁ'liT)
PN .71 =17 > Vo, T = 01

(Inst)

Figure 3. The generic instance relation over type schemes.

monad as long as possible. As such, the types more preciselgir
the monads actually needed by a piece of code.

3. Qualified types for monadic programs

This section describes the formal type rules of our systegurg 1
gives the syntax of types, constraints, environments, apdes-
sions. Monotypes- consist of type variableg, full applied type
constructorsl” 71 ... 7, and function types; — m 7. Function
arrows can be seen as taking three arguments where tisethe
monadic type. We could use a kind system to distinguish mionad
types from regular types but, for simplicity, we distinguithem
using different syntactic categories. Monadic typesare either
monad constantd/ or monadic type variables.

Since types can be polymorphic over the actual monad (which i
essential to principal types) we also have monadic comsgraiof
the formm . >mo, which states that a monax; can be lifted to the
monadm.. Type schemes are the usual qualified types [14] where
we can quantify over both regular and monadic type variables

In the expression language, we distinguish between syatact
value expressions, and regular expressions This is in order to
impose the value restriction of ML where we can only gengeali
over let-bound values.

Figure 2 describes the structural rules of constraint knést,
whereP = r states that the constraints fhentail the constraint
m. The entailment relation is monotone (whaPé C P implies

P = P'), transitive, and closed under substitution. We also requi
that morphisms between the monads form a semi-lattice. rEhis
quirement is not essential for type inference but as show®eicr
tion 5 it is necessary for a coherent evidence translation.

Using entailment, we define the generic instance relafton
o1 = o2 in Figure 3. This is just the regular instance definition
on type schemes where entailment is used over the constraint
the common case where one instantiates to a monotype, the rul
simplifies to:

p=m,7 0=I[p/v] PEOT
PHYVYo.m=71 > 01

(Inst-Mono)

3.1 Declarative type rules

Figure 4 describes the basic type rules of our system; weisisc
rewriting in the next subsection. The rules come in two farthe
rule P|T" F v : o states that value expressions well typed with

a typeo, while the ruleP |T' F e : m 7 states that expression
e is well-typed with a monadic type: 7, in both cases assuming
the constraintg® and type environmerit. The rule (TI-Bot) allows
one to lift a regular type into a monadic type3ot .

The rules for variables, constants, let-bound valuesairtit-
tion, and generalization are all standard. The rule for ldanéx-
pressions (Tl-Lam) requires a monadic type in the premisgeto
well-formed function types. An expression like:.x therefore gets
typea — Bot o where the result is in the identity monad.

The application rule (TI-App) and let-rule (TI-Do) lift intan
arbitrary result monad. The constraifit P = m; > m ensures
that all the monads in the premise can be lifted to a common
monadm, which allows a type-directed evidence translation to the
underlying monadic program.

3.2 Type directed monadic translation

As described in Section 2, we rewrite a source program while
performing type inference, inserting binds, units, and phaams

as needed. This translation can be elegantly described adiype
directed evidence translation [14]. Since the translaicentirely
standard, we elide the full rules, and only sketch how it iseddn
Section 5 we do show the evidence translation for the typzémice
algorithm W since it is needed to show coherence.

Our elaborated target language is System F (but here we leave
out type parameters for simplicity). For the declarativiesuwe
can define a judgment lik& |T" - e : m 7 ~ e which proves
that source terne is given monadic typen 7 and elaborated
to the well-typed output terma. Similarly, the entailment relation
P E mi > ma ~ f returns a morphism witnesg with type
Ya.mi o — mo .

As an example, consider the (TI-App) rule. The rule with atyp
directed translation is defined as:

P|Tkei:mi(2 —>m37)~er P|TEex:ma e~ e
Vi.P Emi>m~ f;

PlTkeiex:mt~
bind,, (fie1) (Ax:(t2 — ma 7).bind,, (f2e2) (Ay:72. f3 (xy)))

The bind,, evidence comes from thilonad(m, bind,,, unit., )
constraint. This constraint is left implicit in the type eslsince it

is always satisfied. Much of the time the morphisms are itenti
functions and the binding operations will be in tii»¢ monad
which can all be optimized away. An optimizer can make furthe
use of the monad laws to aggressively simplify the targenser

3.3 Compatibility with ML

Figure 4 is backwards compatible with the ML type system: it
accepts any program that is accepted by the standard Hindley
Milner typing rules [5] extended with the value restrictiemwe



‘P|F|—v:a P|F|—e:m7" I(z)=o0 I'(c)=0 Pl zmmbFe:mm
- (TlVa) ———~——  (TI-Const) (TI-Lam)
PITrz:0o P|Tkc:o P|ITEAze:m1 —mm
PITrov:T PITrv:0 PloxrT Pr|THv:7 ©»¢ftv(l,P)
(TI-Bot) (TI-Inst) — (TI-Gen)
P|T'twv: Bott PITkwv:T PITktov:Vo.m=T71
P|Tker:mi(e—m37) PlTFex:meme ViPEmi>m
(TI-App)
P|'tejex:m
PITktv:o Pllzoke:mT PITkei:mimn Pllyzmbes:mar ViPEMmM;>m
(TI-Let) (T1-Do)

P|Tkletz=vine:mt

P|Tkletz=erinez:mm

Figure 4. The basic declarative type rules.

PITke:mt PEmp>m
PiITke:m'T

(TI-Lift)

Figure 5. The type rules extended with a lifting rule.

write an ML derivation a§’ Fy. e : 7. To compare the derivations
in both systems, we need to translate regular ML functioesyi
monadic function types, and we defife) as:

(o)
(T 71...7m0)
(11— 72)

T (m1) ... (Tn)
(11) — Bot (12)

We can state compatibility with ML formally as:

Theorem 1(Compatibility with ML). For any well-typed ML non-
value expressiomr such thatl’ -y, e : 7, we also have a valid
monadic derivation in theBot monad of the fornd) |T" + e :
Bot (7). For any well-typed value wherel" by v : 7, we have a
monadic derivation of the forh| I - v : (7).

The proof is by straightforward induction over typing deriv

However, we can lift the monadic result type by using
expansion and introducing an application node, e.gytbepanded
expressioniapp (Az.id z) is accepted since the application rule
allows one to lift the result monad to the requir&th monad.
Since the monadic types only occur on arrows, the programmer
can always use a combination of applications grekpansions to
lift a monadic type anywhere in a type.

Fortunately, such manugtexpansion is rarely required: only
when combining higher-order functions where automatitnif
is expected on the result type. The inferred types in thecbasi
system are also often general enough to avoid need of it. For
example, without annotation, the inferred principal type dpp
isVapipz. (u1 > p2) = (int — p1 «) — p2 « where all the
given applications are accepted as is without neeg-fexpansion.

Lifting

Nevertheless, itis possible to make the type rules morestamder
n-expansion, where we extend the basic system with a general
lifting rule (TI-Lift) given in Figure 5 which allows arbigry lifting

of monadic expressions. For example, éiéunction in this system

has the inferred typ®au. a — p «. Using this new type, all

tions. We observe. that for a standard ML program, we only need the applicationsiapp id, iapp (A\z.z), andiapp (Az.id ) are
the Bot monad which means we can always reason under an emptyaccepted. The good news is that extending the system withiffj|
constraint sefl. Assuming empty constraints, the instance relation s benign: we can still do full type inference and constraiiting

and generalization rule coincide exactly with the HindMyrer
rules. The other rules now also correspond directly. We stiav
case for theApp rule as an example. By the induction hypothe-
sis, we can assume the premisgl’ - e; : Bot (2 — 1) and
the premise) | - e2 : Bot (r2). The first premise is equiva-
lentto@|T F e1 : Bot ({(2) — Bot (7)) by definition. Us-
ing the tautology rule of entailment, we can also concluda th
0 = Bot > Bot and therefore we can apply rule (TI-App) to derive
0|+ e1 ez : Bot (r) which is the desired result.

3.4 Extensions

Unfortunately, the basic type rules are fragile with respec)-
expansion. For example, consider the following functions:

id = Az.x

iapp : (int — Beh int) — Beh int
iapp = Af.f 1

The basic rules infer the type &f to beVa. a — Bot «, and we
suppose the type afipp is given by the programmer. With these
types both the applicationspp id andiapp (Az.x) are rejected
becauseéd and\z.z have the typex — Bot « where the monadic
type Bot doesn’t match the expected monB&eh.

(x given *)

as shown in later sections. The bad news is that some inferred
types become slightly more complicated. For example, the fgr
compose (given in Section 2.3) would be

Vapypipapspap. (pa > p, p2 > 1) =
(B — p27y) = ps ((a— p1 B) — pa (@ — py))

Structural subtyping

To ensure robustness undgrexpansion while retaining simple
types we could introduce a structural subtyping rule. Irtipalar,
besides (TI-Lift) we could also introduce the rule:

PITke:r PET>T
P|ITte:7

(TI-Subsume)

Note that the subsumption constraint is betwggesinstead of
between monads. The rules for subsumption are:

PEr>n PgEn>mn PEmb>bm

PEr—mmn>rm —m' 7

(S-Fun)

P = 70> 7 (S-Taut)
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P|ITH v: P|ITF®er: Y P|ITF®ex: Vi. P i >

| ; viT (TS-Bot) | er:my (1 — ms 1) | €2 ,m2T i.P=Em;>m (TS-App)
P|T'+*v: Bott PITF*e1ea:m
P|IT,z:mi F*e:m P|IT+Hwv:7 o=Genl,P' =171") P|l,zok*e:mr

" (TS-Lam) < - (TS-Let)
PITH Az.e: 71 — m T2 P|TF®letx=vine:mr

e1r#v P|T'Fei:minn Pl embFles:mame Yi.PEmi>m

P|TF®letz=eiine

(TS-Do)
2:M T2

Figure 6. The syntax-directed type rules. The generalization fends defined assenI", o) = V(ftv(o) \ ftv(l")).o .

P w:T
PITF*v:mT

(TS-Lift)

Figure 7. The syntax directed type rules extended with a lifting
rule which replaces the ru{@s-Bot).

These rules are structural over arrows using the usual etv&o
variant typing® With these rules we can give functions likéand
1app fairly simple types:

id : Vo. o« — Bot o
iapp : Y. (int — pint) — pint

And under the subsumption rules we can show that this typ&ifor
Va. o — Bot «, is as general as the typevu. a — p a.
Unfortunately, it turns out that it is exceedingly difficutlh
solve constraints between arbitrary types, as opposechtireints
between just monadic types. Since the subsumption rulesrigie
to constraints between types, we cannot give a coherentraonis
solving strategy that is still complete—we either need teate
certain reasonable programs or we need to solve such ciostra
too aggressively leading to an incomplete inference algari
Thus, our implementation uses the simple strategy sintkerei
lifting nor subsumption provide a satisfactory improveinen

3.5 Syntax-directed type inference

Figure 6 presents a syntax directed version of the declaratpe
rules. The rules come in two flavors, one for value expression
P|T F* v: 7, and one for general expressioR$ " F* e : m 7.
Since each flavor has a unique rule for each syntactical ssione
the shape of the derivation tree is uniquely determined lgy th
expression syntax. Just like the Hindley-Milner syntaxedied
rules, all instantiations occur at variable and constamoduction,
while generalization is only applied at let-bound valueresgions.

We can show that the syntax directed rules are sound and com-
plete with respect to the declarative rules.

Theorem 2(The syntax directed rules are sound and complete)
Soundness: For any derivation P |T" +* v : 7 there exists a
derivationP |T" - v : 7, and similarly, foranyP |T" F* e : m 7
we haveP [T'Fe:m 7.

Completeness: For any derivation on a value expressidn|I" -
v : o there exists a derivatio®’ | T +* v : 7, such thafl" - (P’ |
7) = (P | o). Similarly, for any derivation? |I" + e¢ : m T,

3 Note that when a system has higher-kinds, we need to ensur@éarrow
is not a first-class type constructor.

there exists a derivatio®’ | +° e :
m' ) > (P|mrT).
Both directions are proved by induction on the derivatidfmlow-
ing Jones [14], we use an extension of the instance relatiordier
to define an ordering of polymorphic type schemes and monadic
types under some constraint set. We can define this formsilly a

o =Yo.1=>T PQFGGF(F,VU.(Phﬁ'):}T)ZUQ

'k (Pi]o1) = (Pa|o2)

m' 7/, such thafl” - (P’ |

a, L = ftV(TT7J17 T1, P1) \ ftV(F)
P = 0P P> = Omq > mo
'k (P1 | mi T1) 2 (P2 | ma Tz)

Besides extending the instance relation to monadic typesdeéf-
inition of this qualified instance relation allows us spexifiy to
relate derivations in the declarative system that can eraltype
schemer, to derivations in the syntax directed system that always
end in a monotype.

Finally, the syntax directed rules for the declarative typles
extended with the rule (TI-Lift) can be obtained by replacthe
rule (TS-Bot) with the rule (TS-Lift) given in Figure 7. Thex-
tended system is also sound and complete with respect tocthe e
tended declarative rules.

0 = [m/n,7/al
07’1 = T2

4. Principal types

The standard next step in the development would be to define an
algorithmic formulation of the system (including a rewmito out-
put terms) and then prove that the algorithm is sound and enp
with respect to the syntactical rules, thereby establgskiie prin-
cipal types property. Interestingly, we can do this by ttatien. In
particular, we can show that the syntactical rules in Fighua-
rectly correspond to the syntactical rules of OML in the tlyeof
qualified types [14]. In the next subsection we prove thaefary
derivation on an expressianin our syntactical system, there ex-
ists an equivalent derivation of an encoded tgethin OML and
the other way around. Since OML has a sound and complete type
reconstruction algorithm, we could choose to reuse thas,aand
thereby get sound and complete type inference (and as a-conse
guence there exist principal derivations).

Unfortunately, the OML type reconstruction algorithm @ss
tially the Haskell type class inference algorithm) is ndissactory,
as it would reject many useful programs. Intuitively, tli$ecause
it conservatively rejects solutions to constraints thatreasonable
in light of the morphism laws; since it is unaware of thesedaiv
cannot take advantage of them. The next section developlgan a
rithm that takes advantage of the morphism laws to be bothiger
sive and coherent.



4.1 Translation to OML

The translation between our system and OML is possible sirce
use the same instance and generalization relation as iméoeyt
of qualified types. Moreover, it is easy to verify that ouragiment
relation over morphism constraints satisfies all the regoéents
of the theory, namely monotonicity, transitivity, and alos under
substitution. The more difficult part is to find a direct enicagto
OML terms. First, we are going to assume some primitive térms
OML that correspond to rules in our syntactical system:

bot :Va.a — Bot«a
do  :VafBuipap. (1 > p, p2 > p)
= a— (= p2 B) = ppb
app 1 VafBuipapsp. (pa > p, 2 > g, pis > )

= (= ps B) = pza—pp

Using these primitives, we can give a syntactic encodingfoor
expressions into OML terms:

z]* ==z

qJ* =c

Az.e]* = Az.[€]

v] = bot [v]*

erea] = app [e1] [e2]

let x=wvin €] = let x=[v]* in [e] .

let z=eqinez] =do [e1] [Az.e2]” (with ey # v)

We can now state soundness and completeness of our syntacti

system with respect to encoded terms in OML, where we write
P|T Fow e : 7 for a derivation in the syntax directed inference
system of OML (cf. Jones [14], Fig. 4).

Theorem 3 (Elaboration to OML is sound and complete)
Soundness: WheneverP |[I" +* v : 7 we can also derive
P|T Fow [v]* : 7in OML. Similarly, whenP |T" +* e : m 7 we
haveP | T Fow [e] : m 7.

Completeness: If we can deriveP | I" Fou. [v]* : 7, there also ex-
ists a derivationP | I" -* v : 7, and similarly, wheneveP | T" Fou.
[e] : m 7, we also have? | T +°* e :m 7.

The proof of both properties can be done by straightforwaddi¢-
tion on terms. As a corollary, we can use the general typenreco
struction algorithm W from the theory of qualified types whis
shown sound and complete to the OML type rules. Furtherniiore,
means that our system is sound, and we can derive principasty

Corollary 4. The declarative and syntactic type rules admit prin-
cipal types.

Again, the same results hold for the extended type rules thigh
(TI-Lift) and (TS-Lift) rules. The only change needed isttliae

lifting primitive now needs to be polymorphic to reflect thES-

Lift) rule, i.e. bot : Vau.a — p .

4.2 Ambiguous types

Following Theorem 3, we could encode our type inference-algo
rithm using the type class facility of a language like Haklein-
ploying a morphism type class that provides morphisms betwe
monads. In particular:

class Morph m n where
lift :: ma ->n a

Morph ml m, Morph m2 m, Morph m3 m, Monad m
=>ml (a ->m2b) >m3a->mb

app mf mx = lift mf >>= \f ->

1ift mx >>= \x ->

lift (f x)

app ::

Type checking could now be implemented using the syntdctica
encoding into a Haskell program and running the Haskell type
checker. Unfortunately, this approach would not be veristat-
tory: it turns out that our particular morphism constraigtsckly
lead to ambiguous types that cannot be solved by a generic sys
tem. In particular, Haskell rejects any types that haveatdeis in
the constraints that do not occur in the type (which we calé fr
constraint variables).

Recall our functioniapp : (int — Beh int) — Beh int.
The expressiorfiapp (Az. id (id xz))] has the Haskell type
Vu.(Morph 1 Beh) = Beh int where the type variable:
only occurs in the constraint but not in the body of the typay A
such type must be rejected in a system like Haskell. In g&nera
there could exist multiple solutions for such free constr&ari-
ables where each solution gives rise to a different senmmanfic
common example in Haskell is the prograiow [] with the type
Show a = string. In this example, choosing to resolueas char
results in the string”, while any other choice results j.

We were initially discouraged by this situation until welized
that focusing only on morphism constraints confers an aehggn
the monad morphism laws allow us to show that any solutiothier
free constraint variables leads to semantically equivadssgrams;
i.e., the evidence translations for each solution are estter

Moreover, there is an efficient and decidable algorithm foal-fi
ing a particular “least” solution. At a high-level our alggbm
works by requiring that the set of monad constants and memmhi
between them form a semi-lattice, wiffot as the least element,
Svhere all morphisms satisfy the monad morphism laws. Arothe
requirement that is fulfilled by careful design of the typsteyn is
that the only morphism constraints are between monadicdgpe
stants or monadic type variables, and never between asghiyzes.

We can repeatedly simplify a given constraint graph by dageib-
stituting free constraint variablgs with the least upper bound of
their lower bounds when these lower bounds are constants. Th
simple strategy yields a linear-time decision procedutee Mext
section presents the algorithm in detail and proves coleeren

5. Constraint simplification and coherence

This section presents an algorithmic formulation (a vatabn the
Hindley-Milner algorithm W) of our syntax-directed typeiénence
system. The previous section established that while theriggon-
struction algorithm of Jones can infer principal typessthé/pes
are frequently ambiguous and hence programs with theses type
must be rejected. The contribution of this section is a sinflhear
time) procedure that can eliminate some ambiguous vagabkbe
constraints of a type in eoherentway. By performing constraint
simplification, the types inferred by our algorithm are irttenally

not the most general ones. However, simplification allowistst
more programs to be accepted. Moreover, we can show that sim-
plification isjustified in that the typability of the program is not
adversely effected by the simplified type.

Section 5.1 discusses the key algorithmic typing and rutels a
illustrates elaboration of source terms to System F tamgeng.
Section 5.2 gives our constraint solving algorithm. FipaBec-
tion 5.3 shows, by appealing to the morphism laws, that olw- so
ing algorithm is coherent and does not introduce ambiguity the
semantics of elaborated terms.

5.1 Algorithmic rewriting

The structure of our algorithm W closely follows Jones’ altfon
for qualified types [14], and includes an elaboration inta@waus
with first-class polymorphism. We formulate our algorithma
stylized way to facilitate the proof of coherence. We thirikthe
constraints generated by our system as forming a direciguhgr
with nodes corresponding to monad type constants and Vesiab
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Figure 8. Syntax of constraint bundles and a target language

and edges represented by the morphism relationm’. However,
instead of simply producing constraints of the farm-m’ as in the
syntax-directed system, our algorithm groups related tcainss
together in “bundles”. Constraint bundles come in two flayor
corresponding to the fragments of the typing derivatiord (aence
bits of program syntax) that induced the constraints. Thedlas
allow us to reason that edges in constraint graph come irifepec
kinds of pairs or triples, thus syntactically restrictitg tshape of
the graph and facilitating our coherence proof.

Figure 8 gives the syntax of target termasand typest, and
alters the syntax of constraintsto constraint bundles. As we will
see shortly, the bundles arise from corresponding inferentes
from Figure 9:Do(m1, m2, m) is induced by the monadic let-
binding rule (W-Do) andApp(m1, m2, ms, m) by the (W-App)
rule. Substitution® map type variables to types, afdd» denotes
substitution composition.

Figure 9 shows the key rules in our algorithm W, expressed as
ajudgmentP | I' F* e : t;0 ~ e where the constraint®,
typet, substitutiond, and target terne are synthesized. As shown
in Figure 8,¢ is eitherr or m 7; as in the syntax-directed rules,
x denotes one of two modes,and e; and the target terre is
explicitly typed. The substitutiod applies to the free type-level
variables ¢ andy) in I'. An invariant of the rules is thak(¢) = ¢,
0(P) = P, andf(e) = e. For simplicity, we omit types on formal
parameters and instantiation of type parameters in eltdgbtarms
e. We also assume that a morphism from a mometd 2’ is named
fm,ms; and the bind and unit of a monad arebind,,, andunit,,.
The omitted rules are unsurprising.

Rule (W-Bot) corresponds to the syntactic rule (TS-Bot). It
switches modes from to * in its premise, produces the monadic
type Bot T, and elaborates the term by inserting the unit/oi.

Rule (W-App) elaborates each sub-term iniits first two presyis
and in the fourth and fifth premises, computes the most-géner
unifier 3 of the formal parameter type @fi and the value type
of es. We generate aApp-constraint bundle which indicates that
there is a morphism from each @§02 111, 0501 12, anddsp’ to the
result monadl. In the elaborated termg,,, . stand for morphisms
that will be abstracted (or solved) at the nearest enclogitig
similarly the bind,, are the binds of the result monad. The rule
for monadic let-bindings, (W-Do), is nearly identical to {%p)
except that there is one fewer monad variable.

Finally, rule (W-Let) implements generalization. We reihe
let-bound valuev in the first premise, and compute the variables
v over which we can soundly generalize. In the third premise, w
compute the variableg that appear in the constrainy but are
not free in the type—these variables are candidates for constraint
simplification. The judgmentP; sovel) P{; 0" simplifies con-
straints, eliminating the ambiguous type variahlesoherently—
this judgment is discussed in the next subsection. The tastige
rewrites the body in a context in whicks type is generalized. In
the conclusion, we translate to an explicitly typed appicaform,
where the let-bound value is elaborated to generalize oférits
constraints and the type variables

5.2 Soundness and efficiency of constraint simplification

Intuitively, our algorithm views a constraint sét as a directed
graph, where the nodes in the graph are the monad types, and th
edges are introduced by the constraint bundles. For exampgle
view a bundleDo(m1, m2, m) as a graph with vertices fon1, mo
andm, and edges fromn; to m andms to m. In the discussion
below, we informally use intuitions from this graphical wief P.
For each edge betweemandm’ in the constraint graph, a solution
to P must compute a specific morphism betweemndm'.

We start our description of the algorithm with the definitioin
morphism-induced least-upper bounds. This definitionlatike to
an initial set of constraint®, that define the monad constants and
primitive morphisms used to type a source program.

Definition 5 (Least-upper bound)With respect to an initial context
P,, given a set of monad constams= {M, ..., M, }, we write
lub(A) = M to mean thaf\/ is the least upper bound of the monad
constants in4, i.e.,Vi.Py = M; > M; and for anyM’ such that
Vi.Py = M; > M', we havePy + M > M'. Although defined
with regard to a particular initial contex®y, we writelub(A) for
conciseness, leaving, implicit.

Our constraint simplification algorithm is straightforwlaiVe
limit our attention to cycle-free constraint graphs. Whesea cycle
is detected in the constraint graph, we require every viariabd
constant in the cycle to be identical—a constraint graphh it
cycle containing more than one constant cannot be solvedhand
program is rejected.

Given a cycle-free graph we perform a topological sort aed th
proceed to simplify the graph starting from the leaves. We- co
sider a variable. only after all its children have been considered.
All variables have lower bounds (in-edges), since varmble in-
troduced by (W-Do) and (W-App) and have lower bounds by con-
struction. Besides, the node correspondindgta has an out-edge
to every other node. For each variahleconsidered, if all its in-
edges are from monad constarits= {M, ..., My}, and ifu has
some out-edge (needed for coherence, and discussed inxhe ne
sub-section), we assign fothe constantub(A), thus eliminating
the variable and proceeding to consider the next variabéeyi

Figure 10 presents a set of inference rules that codifiesohis
ing algorithm (omitting the cycle elimination phase, fomgiic-

ity). The judgment has the forn® o) P’;0. It considers the
free constraint variableg in P, replacing them with monad con-
stants under certain conditions, returning the residuaktaints

P’ that cannot be simplified further. This judgment ensures tha
dom) C panddP’ = P'. Thus, in the (W-Let) rule we apply
6’ to the body ofe; in the conclusion, in effect resolving any free
morphismf,, ./ to the specific morphism determined #y Notice
that sincedom#) C [, the premises of (W-Let) ensure that we
eliminate only those variables appearing in neither thd fiyjze
nor the context.

The inference rules make use of a few auxiliary functions,
defined to the right of Figure 10. First, for a constraint Hent
functionup-bnd ) is the type of the resulting monad. In contrast,
lo-bnd(r) is the set of types in a constraint bundilem whichwe
require morphisms. Both of these are lifted to sets of cairgs in
the natural way. We also defirflewsTo,, P, the set of constraints
in P that havep as an upper boundjowsFrom,, P, the set of
constraints that have as a lower bound.

We now explain the rules in detail. Rule (§4s the workhorse
of the algorithm. In the first two premises, it selects sonmestraint
« whose upper boung is in the list of variables to be solvegd,
The third premise checks thathas an upper bound; i.e., it is the
lower bound of at least one constraint #h (for coherence). The
fourth premise defined, the set of all ofu’s lower bounds, and the
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Figure 9. Selected algorithmic rules for elaboration into System Eh(types in elaborated terms omitted for readability).
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Figure 10. P () P’; 9: Simplifying constraints using theb-strategy.

fifth premise defines the substitutignas mappingu to the least
upper bound ofA. Recall again thdubis only defined on constant
monads, sod must contain no variableg’; this requirement es-
sentially forces solving to proceed bottom up, with the é=aof
the tree induced by (following cycle elimination) solved first. Fi-
nally, the sixth premise applies the substitution to thest@ints
P and proceeds to solve them; the final substitution consfgteo
substitutiond’ produced by this recursive step, composed With
Rule (S-M) checks that constraints involving only constant
(e.g., those whosg have been completely substituted for) are con-
sistent with the initial constraint sé%, in which case they can be
dropped. Finally, the first three rules help with bookkegpindi-
cating that (1) constraints may remain unsimplified; (2)lihagpe
constraints may be dropped; and (3) constraints may be pednu
This last rule is non-deterministic, but it can be impleneengasily
using simple topological sort of a cycle-free constrainistaaint

graph.
The next definition and the following lemma establish that
P sohel ) P’; 0 only produces sound solutions to a constraint set.

The proof is straightforward.

Definition 6 (Sound solution) Given an initial contextP, and
a constraint setP, a solutiond to the constraintsP is sound if

and only if, for eachu in dom(6), we have{M,, ..
lo-bndg0(flowsTo,, P)), andVi.Py = M, > Op.

Lemma 7 (Constraint simplification is sound)For all Py, P, [z,
P',0, if we haveP, - P %% p'. 9 thendis sound forP. O

7Mn} =

Theorem 8(Constraint solving is linear time)Given a constraint
setP and an initial contextPs, there exists & (| P|) algorithm to
decide whether or naP is fully solvable where a constraint se®

is fully solvable iffi = ftv(P) impliesPy - P sove ) -5 0.

Proof. (sketch) The algorithm begins by detecting and eliminating
cycles in the constraint graph. Doing so is linear in numbesmo-
tices and edges of the graph, i@(|V'| + |E|), where|V| and|E|
are each at most three times the numbeApp(m1, ma, ms, m)
constraints plus twice the number@b(m1, m2, m) constraints.

Then the algorithm sorts the graph topologically (alsodine

Then it attempts to eliminate each constraint variable ftesb
order. Eliminating a single constraint variable takes tamistime.
This is because elimination amounts to the cost of computieg
lubfor elements of a finite lattice i and alllubs can be pre-
computed onP, without dependence oR.



After eliminating all eligible constraint variables we diet
with either a graph that has variables without upper bouis (
which case we answer “no”) or we have a graph with only con-
stants. Checking for upper bounds in a variable-free graplgain
linear in the number of constraints, since each orderingoeaan-
swered in constant time (again, pre-computedon a

One would also like to show that our constraint solving algo-
rithm does not solve constraints too aggressively. We defirien-
provementelation on type schemes (following the terminology of
Jones [16]), as a lifting of the solving algorithm.

Definition 9 (Improvement of type schemesgiven a type scheme
o = Vu.Pi = 7 and a set of type variableg = (ftv(P1) \

ftv(T))No. If P ) P»; 0 then we say’ = Vi.P» = Tis an
improvemenof o.

We might conjecture at first that improvement of types is con-
sistent with the type instantiation relation. That isgifis an im-
provement ofo, thenPy - o/ > cand P - o > o’. How-
ever, by eliminating free constraint variables, our sajhgorithm
intentionally makess’ less general tham. For example, given
o = Vu.(Mi > p,ut> M) = 7, (Wherep ¢ ftv(r)) our al-
gorithm could improve this to’ = M; > M> = 7, and indeed
further tor, if Py = M1 > M». However, for an arbitrary constant
u, itis not that case thaty = Mi > u, > Ma, which is what is
demanded by the instantiation relation.

Nevertheless, the type improvement scheme is still usefaks
improvement at generalization points does not impact theliyity
of the remainder of the program.

Theorem 10 (Improvement is justified) For all P,T',z,0,0’,
e,m,t,ifwehaveP | T',z:0 - e : m 7, ando’ is an improvement
ofo,thenP | T, z:0' Fe:mT.

Intuitively, we can see this theorem holds because the inepnent
of atypeoc = Vu. P = 7toViu. P, = 7 only effects the free
constraint variables: the actual typés unchanged and P = P,
we always haveP = P, too. At any instantiation ofr, we can
always substitute the improved type since the typie the same
and the improved constraints, are also entailed if the original
constraintsP; were.

5.3 Coherence

The effectiveness of our constraint-solving strategy stéom our
ability to eagerly substitute constraint variablewith the least
upper boundM of all the types that flow to it. Such a technique
is not admissible in a setting with general purpose qualifyee
constraints, particularly when the evidence for constsafim this
case our morphisms, binds and units) has operational ngeadire
may worry that by instantiating: with some M’ # M where

M > M’, we may get an acceptable solution to the constraint graph

but the meaning of the elaborated programs differs in eash.ca

This section shows that when the monad morphisms satisfy the

morphism laws our constraint improvement strategy is catier
i.e., all admissible solutions to the constraints yieldbelations
with the same semantics. So, any specific solution (inctutte
one produced by thieib-strategy) can safely be chosen.

Our approach to showing coherence proceeds as follows:

solve( i)
—

1. Given a constraint s€? and a derivation”y + P
we calld thelub-solution toP.

50,

2. We can see all other solutions fdas being derived from the
lub-solution by repeatelbcal modificationgo thelub-solution.
A local modification involves picking a single variahlesuch
that0 = 60'(xp — M) and considering a solution to the
constraint set’ P that assigns some other solutian’ # M

to p; i.e., we have some solutigh = 6'(u — M'). We can
iterate this process, generating the solutipp, from 6; in this
manner.

3. We enumerate the ways in whiéhP can differ from6,1 P,
considering interactions between pairs of constraint @sd
(App/App, Do/Do, Do/App, App/Do, etc.). In each case,
since each kind of constraint bundle can be related to the ab-
stract syntax of elaborated programs, we can reason abeut th
differences in semantics that might arise from theand the
0i+1 solutions. We show that when all the morphisms satisfy
the morphism laws, that the solutions are indeed equivalent

Our result applies only to well-formed contexts, a notion de
fined below. In the definition, requirements (1) and (2) eashat
the monads and their morphisms are well-typed. Requireif@®@nt
ensures that least-upper bounds are defined and that trefvis
monad. Our notion of term equivalence, writ@n= e,, is exten-
sional equality on well-typed, elaborated terms. Claudgarid (5)
state that this equivalence is axiomatized by the traiitsitprop-
erty and the morphism laws.

Definition 11 (Well-formedness of a context)T'he following con-
ditions are required of well-formed contex,, I':

1. For any pair of monad constanig we have bind; and unit pr
bound as constants i, with appropriate types.

2. For all My, M, if Py |= My > M- thenI' contains a constant
fuy ., bound at the typ¥a. M1 o — Mo .

3. For any set of monad constants there exists\/ such that
lub(A) = M and Bot is a monad constant ilir with P, =
Bot > M, for all M.

4. We assume that for alf1, M2, M3, if Py = M, > M and
Py = My > Ms, thenfar, ar, © far v =2 far as-

5. We assume that for al\f1, Mz, e1, e2, t1, t2, such thatPy =
My > M, and ey My t; and ez Ms t2, we have
fMl,Mg (bil’\dM1 e )\:C:tl.ez) =~ binsz (fMl,Mg el) ATty
(fary nr, €2)

The following lemma establishes that in well-formed cotgex
our algorithm produces well-typed System F terms. The pi®af
straightforward induction on the structure of the derivatiwhere
by {I'} we mean the translation of a source typing context to a
System F context.

Lemma 12 (Well-typed elaborations)GivenI" such thatP,, T" is
well-formed,e, t,0, e, k, such thatP | T' F* e : ¢;0 ~ e. Then
there exists such that{{0T']} - abstractConstraints(P,e) : t.

Next, we formalize the notion of a local modificatioh of a
valid solutioné to constraint set. Condition (1) identifies the vari-
able  which is the locus of the modification. Conditions (2) and
(3) establish the range of admissible solutiongt@nd condition
(4) asserts that the modified soluti@hpicks a solution foy that
is different tharg, but still admissible.

Definition 13 (Local modification of a solution) Given a solution
01 to a constraint ser, P), a local modification t@; is a solution
0 for which the following conditions are true:

1. There exists a variablg and a constantM such thaty =
up-bndw) andd; = 07 (p — M).

2. There existd/'* = lub(#} (lo-bndgflowsTo, P)))). M is a
lower-bound for.

3. Thereexist§ M, ..., M} = 7 (up-bndgflowsFrom,, P)).
EachM/" is an upper bound fog.

4. There exists a monad constant # M such thatP, I M >
M’ and¥i.Py = M’ > M}, such tha, = 6 (1 — M’)



Finally, we state and sketch a representative case of the mai may admit several possible solutions, so the morphismsrigad

result of this section: namely, that tha-strategy is coherent when
the morphisms form a semi-lattice and satisfy the morphesns|

Theorem 14(Coherence of constraint solving)
GivenPy,T', P,e,t,0,61,02,e, k, i, such that

1. Py, T is well-formed andP is cycle-free.

2. For all u € f, the setflowsFrom,, P is non-empty, i.ey has
an upper bound.

B.P|T'Fe:t;0~e.

4. There exist®); such that dor1) C [ and 6, is a sound
solution for P.

5. There exist§,, a local modification 0.

Then,0 e = Ose.

Proof. (Sketch) Since), is a local modification, we have (from
condition (1) of Definition 13)9; = 6i(p — M), for some
w, M, 07, andP = 7, P', wherep = up-bndr) is the modified
variable. We proceed by cases on the shape of
Caser is anApp bundle: We haved; m = App(M1°, ML, M, 1)
(since from condition (2) of Definition 13lub is only defined
on monad constant). To identify the upper boundg.ofve con-
sider the constraints i (flowsFrom,, P’), note that all the upper
bounds must be constants (from condition (3)), and proceed b
cases on the shape of each of the constraihis this set.
Sub-caser’ is an App bundle: Without loss of generality on
the specific position of,, we haved’n’ = App(ma, i, ms, M),
where M" is an upper-bound of’. From the shape of the con-
straints, we reason that we have a source term of theddjam ez ),
that is elaborated to the term shown below, wherg , es are the
elaboration of the sub-terms.

1. bindyni (fon, arni ) (Az:_bindy mi

2. (fyu,nni (bindy (fM%O,;L e1) (Az1:.

3. bind. (fasgo., €2) (Az2:(fage (21 22))))))
4. ()‘y:—'fm_g,]\rf’” (zy)))

Under the solutiong; and®-, the inner subterm at lines 2 and 3
(call it &) may differ syntactically, i.e.f1é # 0-é. Specifically,
the solutionf; chooses: — M while 62 may choose: — M’,
for M # M’. However, using two applications of the morphism
laws, (condition (5) of Definition 11), we can show that thés
extensionally equivalent to the term shown below.

2. binde (fu,]\l’” o fA{iOTM e1) ()\:L’1:_.
3. bindyni (f, ami © Faaie e2) (Aza:..

(Fpani © Fasto (1 22)))

Appealing to condition (4) of Definition 11, the transitiiprop-
erty, we get that the term above is extensionally equivaierihe
term below (call ite").

2. binthi (-fM{O.,M/M el) (A:Eli_.
3. bindyn: (fJVIéO,]\IM e2) (/\9323—-(f1v1§0,Mhi (z1 22))))

We haveé = & and hence);é = 6,¢&’. Since,u ¢ FV (&), we
havef,&’ = 0,&’, andf:&’ = 0.8, thus establishing,& = 0-2¢, as
required. a

5.4 Ambiguity and limitations of constraint solving

Our constraint solving procedure is effective in resolvingny
common cases of free constraint variables in types thatcvothl-
erwise be rejected as ambiguous by Haskell. However, adtioit
of our algorithm is that, for coherence of solving, we reguiee
constraint variables to have some upper bound in the camisset.
(See condition (2) of Theorem 14.) A variable with no uppeurzb

these solutions differ and result in different program iéngs—
our algorithm rejects such a program as ambiguous.

We argue that for typical programs our constraint solvimgtst
egy is still effective. Our experience shows that terms \&ithun-
bounded constraint variable either consist of ‘dead’ cotaions
that are never executed, or constitute top-level expressio the
next paragraph we discuss a particular example programamith
ambiguous type, illustrating the former case. To deal withlatter
case, top-level expressions should have type annotattdhthe
examples in this paper are deemed unambiguous by our &ligorit
provided a top-level annotation. Out of the 5 example pnogre3
programs have types with variables that do not appear in ia¢ fi
type. All of these types would be rejected by OML (or Haska)
ambiguous but are accepted by our system since they all loave ¢
straint variables with several distinct lower bounds andupper
bound, so we can instantiate them with the lub of the lowendsu

Consider the following example, with a state morgad and a
primitive functionread: int — ST char:

let g = fun O —>

let £ = fun x -> fun y >
let z = read x in read y in
let w=1f 0 in ()

Here, the type inferred fof is Vu. (ST > u) = int —
Bot int — u char. Because of the partial applicatidn 0, we
must giveg the typeVu, . (ST > p, Bot > i) = unit —
1’ unit. Here, the constraint variabje resulting from the partial
application off does not appear in the return type, while it appears
in the constraints without an upper bound.

Picking an arbitrary solution for, sayy = ST or u = 10,
where Py = ST > 10, causes the sub-termto be given differ-
ent types. This is a source of incoherence, since our extegisi
equality property is only defined on terms of the same typavHo
ever, pragmatically, the specific type chosenddras no impact on
the reduction of the program, and we conjecture that in aksa
when this occurs, the unbounded constraint variable hasfhe i
ence on the semantics of the program. As such, our impleti@mta
supports a “permissive” mode, so that despite it technidaging
ambiguous, we can accept the progrgnand improve its type to
Vu'.Bot 1>y, = unit — p’ unit, by solvingu = ST.

6. Implementation and applications

We have implemented our inference algorithm for the core lan
guage of Figure 1 extended with standard features, inajucm-
ditionals and recursive functions. Our implementation iigten in
Objective Caml (v3.12) and is about 2000 lines of code. lbfes
our basic morphism insertion strategy (i.e., Figure 4) dis pro-
vides an alternative typing mode that uses the (TI-Lifter(fig-
ure 5). All rewritings shown in this paper, modulo minor rebit

ity improvements, were produced with our implementatiod am
against matching monadic libraries.

In this section we present programs using two additional-mon
ads, to give further examples of the usefulness of our sygtans-
ing and information flow tracking. For the latter, our tedtatire-
port [27] further considers a source language extended mitta-
ble references, which for tracking information flow reqsiparam-
eterized monadd/NVe can type rewritten programs using the Flow-
Caml security type system [24] and thereby prove they arersec

6.1 Parsing example

A parser can be seen as a function taking an input string and
returning its unconsumed remainder along with a result pety
«. We can apply this idea directly by implementing a parser as



a monad whose typ&ar « conveniently hides the input and
output strings. Its bind and unit combinators have namiegp and
unitp, respectively. Th@oken: char — Par unit parser parses a
particular character, whilehoice: (unit — Par o) — (unit —
Par a) — Par « returns the result of the first (thunkified) parser
if it is successful, and otherwise the result of the secomdgra

As an example we shall write a parser that computes the maxi-
mum level of nested brackets in an input string:

(rec nesting. fun (O->
let nonempty = fun ()->

token ’[’;
let n = nesting() in
token ’]°7;
let m = nesting() in

max (n + 1) m in
let empty = fun () -> 0 in
choice (fun ()-> nonempty()) (fun (O-> empty())) (O

Interpreted as standard ML code, the above program is net typ
correct: the functionmax and+ are typed asnt — int — int,
which does not match with the type sfandm of type Par int.

In our system the example is well-typed where the term gets
type Par int. The type directed translation automatically inserts
the binds for sequencing and units to lift the final resulbitite
parser monad. The actual translation produced by our inmgriésn
tion is:

->

O->
(fun
(fun

(rec nesting. fun ()

let nonempty = (fun
bindp (token ’[’)
bindp (nesting())
bindp (token ’]’) (fun _
bindp (nesting()) (fun m
unitp (max (n + 1) m)))))) in

let empty = fun () -> 0 in

choice (fun () -> nonempty())

(fun () -> unitp (empty()))) O

n

6.2 Information flow

We are interested in enforcing a confidentiality propertytriagk-
ing information flow. Data may be labeled with a security leaed
the target independence property, called noninterferédcé?],
ensures that low-security outputs do not depend on highrisgc
inputs. Ever since Abadi et al. showed how to encode infaomat
flow tracking in a dependency calculus [1], a number of monadi
encodings have been proposed [7, 26, 19, 4]. We focus onanvari
of the Sec monad [26] that wraps data protected at some security
level for a pure functional subset of ML. In the absence o¢ st
fects, we only have to ensure that data with a certain cortfalgn
level is not disclosed to lower-level adversaries (expflows).

Let us consider a simple security lattiged. < L < H <
T}. The information flow monadecH (resp.,SecL) tracks data
with confidentiality level H (resp., L) with monadic operators
bindh,unith (resp.,bindl,unitl). The may-flow relation is ex-
pressed via a morphism that permits public data at a pratéetel:

labup : SecL > SecH

Thus data labeled may be used in a context expecting data labeled
H, but not vice versa.

The following small example computes the interest due for
a savings account, and the date of the last payment. Pramitiv
savings returns a secret, having typenit — SecH float,
rate returns a public input having typenit — SecL float.
add_interest is a pure function computing the new amount of
the account after adding interest, having typpeit — float —

float. Finally, current_date returns the current date, having type
unit — int.

add_interest (savings ()) (rate())

The rewriting lifts the low securityrate to compute the high
secrecy update faravings. The final type of the entire expression
is SecH float.

bindh (savings ()) (fun y ->
bindh (labup (rate ())) (fun z ->
unith (add_interest y z)))}

Our extended technical report [27] gives a proof of sounsines
with respect to FlowCaml for an information flow state monad
which subsumes th&ecx monads; therefore they also soundly
encode non-interference.

7. Related work

Our work builds on Jones’ theory of qualified types [14, 1€], 15
which ensures principal types and coherence of the typeeinfe
for OML and is used to infer Haskell type classes. We adapgt thi
approach for a practical monadic setting. The key diffeedathat
we make the solving procedure aware of morphism laws, in auch
way that Jones’ restriction on ambiguous types can be rethove

Filinski previously showed that any individual monadiceetf
can be synthesized from first-class (delimited) contirwnatiand a
storage cell [11], and thereby can be expressed in direlet with-
out explicit use of bind and unit. Kiselyov and Shan [18] gppl
this representation to implement probabilistic programsia ex-
tension to Objective Caml. While our system shares the saals g
as these, it uses a different mechanism—type-directedtiegw—
to insert monadic operators directly, rather than reqgithrem to
be implemented in terms of continuations.

Filinski also showed how to implement monads in a compos-
able way [9]: given implementations of individual monadsd @n
order in which they can bkyeredon top of each other, he gives
a semantics to their compositions. However, Filinski'sresgnta-
tion elides monadic types from terms, complicating proguatier-
standing. For example, the typesfconds in his system would be
unit — int, notunit — Beh int. Our approach fully integrates
monadic types with ML type inference and yields well-typed M
programs, therefore it is hopefully easy to understand bypito-
grammers. Our approach can also be seen as orthogonal wgnce
leave the implementation of monads to the programmer,iggatl
monad operators as black boxes. The lattice induced by owr mo
phism declarations corresponds to Filinski’s layeringictiure be-
tween monads.

In his latest work on this topic [10], Filinski proposes arecg
tional semantics for composing monads; he reflects monattein
types, as effects, and provides runtime guarantees fortyysdd
programs, by dynamically inserting the minimal number ofdsi
and units, based on syntactic hints. Orthogonally, we perfype
inference from unannotated source code. We make the monadic
types, operators, and morphisms explicit in the rewrittagmam,
which gives the programmer the option to review and assess th
resulting program. Last but not least our approach suppatis
morphism over monads, permitting us to abstract and gereral
monads and morphisms. For example, the rewritt@ipose func-
tion, whose type is given in Section 2.3, would additionaie
as arguments the monads and morphisms used by its body,cakin t
Haskell's dictionary-passing interpretation of type sks

We can view our rewriting algorithm as a particular case of a
more general strategy faype-directed coercion insertionvhich
supports automatic coercion of data from one type to anofith-
out explicit intervention by the programmer. Most relatedtir ap-
proach is that of Luo [21, 20], which considers coercioniitise as



part of polymorphic type inference. In Luo’s system revagis may
be ambiguous: when more than one is possible, each may Have di
ferent semantics. Also, the system does not include qutifiges,
S0 coercions may not be abstracted and generalized, hexprgs-
siveness. Our own prior work addressed the problem with guabi
ity by carefully limiting the form and position of coerciorf28].
However, we could not scale this approach to a setting witi+po
morphic type inference, as even the simplest combinatibér®-0
ercions admitted (syntactic) ambiguity. Our restrictionmntonads
in the present work addresses this issue: we can prove calgere
by relying on the syntactic structure of the program to unigonrb
ously identify where combinators should be inserted, anenithe
choice of combinators is unconstrained, the morphism ldies/a
us to prove that all choices are equivalent.

Benton and Kennedy developed MIL, tironadic intermediate
language as the basis of optimizations in their MLj compiler [2].
They observe, as we do, that ML terms can be viewed as hawng th
structure of our types (Figure 1) where monads appear in positive
positions. While our approach performs inference and latins
together, their approach suggests an alternative: cotihegource
ML program into monadic form and then infer the binds, units,
and morphisms. We know from our translation to Haskell that
this approach can only work by informing the solver of monad
morphisms.

8. Conclusions

Monads are a powerful idiom in that many useful programming
disciplines can be encoded as monadic libraries. ML program
enjoy an inherent monadic structure, but the monad in curessi
hardwired to be the I/O monad. We set out to provide a way to
exploit this structure so that ML programmers can progragiresj
monads of their choosing in a lightweight style.

The solution offered by this paper is a new way to infer mooadi
types for ML source programs and to elaborate these programs
in a style that includes explicit calls into monadic libesiof the
programmer’s choice. A key consideration of our approacto is
provide programmers with a way to reason about the semasttics
elaborated programs. We achieve this in two ways. Firsttythes
we infer are informative in that they explicitly indicateetimonads
involved. And, second, when our system accepts a program, we
show that all possible elaborations of a program have theesam
meaning, i.e., our elaborations are coherent.

We implement our system in a prototype compiler, and evaluat
it on a variety of domains. We find our system to be relatively
simple, both to implement and to understand and use, andrhdwe
in that it handles many applications of interest.
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