ListsWorking with Structured Data
Pairs of Numbers
This declaration can be read: "The one and only way to
    construct a pair of numbers is by applying the constructor pair
    to two arguments of type nat." 
Functions for extracting the first and second components of a pair
    can then be defined by pattern matching. 
Definition fst (p : natprod) : nat :=
match p with
| pair x y ⇒ x
end.
Definition snd (p : natprod) : nat :=
match p with
| pair x y ⇒ y
end.
Compute (fst (pair 3 5)).
(* ===> 3 *)
match p with
| pair x y ⇒ x
end.
Definition snd (p : natprod) : nat :=
match p with
| pair x y ⇒ y
end.
Compute (fst (pair 3 5)).
(* ===> 3 *)
Since pairs will be used heavily in what follows, it will be
    convenient to write them with the standard mathematical notation
    (x,y) instead of pair x y.  We can tell Coq to allow this with
    a Notation declaration. 
The new notation can be used both in expressions and in pattern
    matches. 
Compute (fst (3,5)).
Definition fst' (p : natprod) : nat :=
match p with
| (x,y) ⇒ x
end.
Definition snd' (p : natprod) : nat :=
match p with
| (x,y) ⇒ y
end.
Definition swap_pair (p : natprod) : natprod :=
match p with
| (x,y) ⇒ (y,x)
end.
Definition fst' (p : natprod) : nat :=
match p with
| (x,y) ⇒ x
end.
Definition snd' (p : natprod) : nat :=
match p with
| (x,y) ⇒ y
end.
Definition swap_pair (p : natprod) : natprod :=
match p with
| (x,y) ⇒ (y,x)
end.
Note that pattern-matching on a pair (with parentheses: (x, y))
    is not to be confused with the "multiple pattern" syntax (with no
    parentheses: x, y) that we have seen previously.  The above
    examples illustrate pattern matching on a pair with elements x
    and y, whereas, for example, the definition of minus in
    Basics performs pattern matching on the values n and m:
Fixpoint minus (n m : nat) : nat :=
match n, m with
| O , _ ⇒ O
| S _ , O ⇒ n
| S n', S m' ⇒ minus n' m'
end. The distinction is minor, but it is worth knowing that they are not the same. For instance, the following definitions are ill-formed:
(* Can't match on a pair with multiple patterns: *)
Definition bad_fst (p : natprod) : nat :=
match p with
| x, y ⇒ x
end.
(* Can't match on multiple values with pair patterns: *)
Definition bad_minus (n m : nat) : nat :=
match n, m with
| (O , _ ) ⇒ O
| (S _ , O ) ⇒ n
| (S n', S m') ⇒ bad_minus n' m'
end. 
 If we state properties of pairs in a slightly peculiar way, we can
    sometimes complete their proofs with just reflexivity and its
    built-in simplification: 
Fixpoint minus (n m : nat) : nat :=
match n, m with
| O , _ ⇒ O
| S _ , O ⇒ n
| S n', S m' ⇒ minus n' m'
end. The distinction is minor, but it is worth knowing that they are not the same. For instance, the following definitions are ill-formed:
(* Can't match on a pair with multiple patterns: *)
Definition bad_fst (p : natprod) : nat :=
match p with
| x, y ⇒ x
end.
(* Can't match on multiple values with pair patterns: *)
Definition bad_minus (n m : nat) : nat :=
match n, m with
| (O , _ ) ⇒ O
| (S _ , O ) ⇒ n
| (S n', S m') ⇒ bad_minus n' m'
end.
Theorem surjective_pairing' : ∀ (n m : nat),
(n,m) = (fst (n,m), snd (n,m)).
Proof.
reflexivity. Qed.
(n,m) = (fst (n,m), snd (n,m)).
Proof.
reflexivity. Qed.
But just reflexivity is not enough if we state the lemma in a more
    natural way: 
Theorem surjective_pairing_stuck : ∀ (p : natprod),
p = (fst p, snd p).
Proof.
simpl. (* Doesn't reduce anything! *)
Abort.
p = (fst p, snd p).
Proof.
simpl. (* Doesn't reduce anything! *)
Abort.
Instead, we need to expose the structure of p so that
    simpl can perform the pattern match in fst and snd.  We can
    do this with destruct. 
Theorem surjective_pairing : ∀ (p : natprod),
p = (fst p, snd p).
Proof.
intros p. destruct p as [n m]. simpl. reflexivity. Qed.
p = (fst p, snd p).
Proof.
intros p. destruct p as [n m]. simpl. reflexivity. Qed.
Notice that, by contrast with the behavior of destruct on
    nats, where it generates two subgoals, destruct generates just
    one subgoal here.  That's because natprods can only be
    constructed in one way. 
 
Exercise: 1 star, standard (snd_fst_is_swap)
Theorem snd_fst_is_swap : ∀ (p : natprod),
(snd p, fst p) = swap_pair p.
Proof.
(* FILL IN HERE *) Admitted.
☐
(snd p, fst p) = swap_pair p.
Proof.
(* FILL IN HERE *) Admitted.
☐
Theorem fst_swap_is_snd : ∀ (p : natprod),
fst (swap_pair p) = snd p.
Proof.
(* FILL IN HERE *) Admitted.
☐
fst (swap_pair p) = snd p.
Proof.
(* FILL IN HERE *) Admitted.
☐
Lists of Numbers
For example, here is a three-element list: 
As with pairs, it is convenient to write lists in familiar
    notation.  The following declarations allow us to use :: as an
    infix cons operator and square brackets as an "outfix" notation
    for constructing lists. 
Notation "x :: l" := (cons x l)
(at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).
(at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..).
It is not necessary to understand the details of these
    declarations, but here is roughly what's going on in case you are
    interested.  The "right associativity" annotation tells Coq how to
    parenthesize expressions involving multiple uses of :: so that,
    for example, the next three declarations mean exactly the same
    thing: 
Definition mylist1 := 1 :: (2 :: (3 :: nil)).
Definition mylist2 := 1 :: 2 :: 3 :: nil.
Definition mylist3 := [1;2;3].
Definition mylist2 := 1 :: 2 :: 3 :: nil.
Definition mylist3 := [1;2;3].
The "at level 60" part tells Coq how to parenthesize
    expressions that involve both :: and some other infix operator.
    For example, since we defined + as infix notation for the plus
    function at level 50,
Notation "x + y" := (plus x y) (at level 50, left associativity). the + operator will bind tighter than ::, so 1 + 2 :: [3] will be parsed, as we'd expect, as (1 + 2) :: [3] rather than 1 + (2 :: [3]). 
    (Expressions like "1 + 2 :: [3]" can be a little confusing when
    you read them in a .v file.  The inner brackets, around 3,
    indicate a list, but the outer brackets, which are invisible in
    the HTML rendering, are there to instruct the "coqdoc" tool that
    the bracketed part should be displayed as Coq code rather than
    running text.)
 
    The second and third Notation declarations above introduce the
    standard square-bracket notation for lists; the right-hand side of
    the third one illustrates Coq's syntax for declaring n-ary
    notations and translating them to nested sequences of binary
    constructors.
 
    Again, don't worry if some of these parsing details are puzzling:
    all the notations you'll need in this course will be defined for
    you.
 
 
 Next let's look at several functions for constructing and
    manipulating lists.  First, the repeat function, which takes a
    number n and a count and returns a list of length count in
    which every element is n. 
Notation "x + y" := (plus x y) (at level 50, left associativity). the + operator will bind tighter than ::, so 1 + 2 :: [3] will be parsed, as we'd expect, as (1 + 2) :: [3] rather than 1 + (2 :: [3]).
Repeat
Fixpoint repeat (n count : nat) : natlist :=
match count with
| O ⇒ nil
| S count' ⇒ n :: (repeat n count')
end.
match count with
| O ⇒ nil
| S count' ⇒ n :: (repeat n count')
end.
Fixpoint app (l1 l2 : natlist) : natlist :=
match l1 with
| nil ⇒ l2
| h :: t ⇒ h :: (app t l2)
end.
match l1 with
| nil ⇒ l2
| h :: t ⇒ h :: (app t l2)
end.
Since app will be used extensively, it is again convenient
    to have an infix operator for it. 
Notation "x ++ y" := (app x y)
(right associativity, at level 60).
Example test_app1: [1;2;3] ++ [4;5] = [1;2;3;4;5].
Proof. reflexivity. Qed.
Example test_app2: nil ++ [4;5] = [4;5].
Proof. reflexivity. Qed.
Example test_app3: [1;2;3] ++ nil = [1;2;3].
Proof. reflexivity. Qed.
(right associativity, at level 60).
Example test_app1: [1;2;3] ++ [4;5] = [1;2;3;4;5].
Proof. reflexivity. Qed.
Example test_app2: nil ++ [4;5] = [4;5].
Proof. reflexivity. Qed.
Example test_app3: [1;2;3] ++ nil = [1;2;3].
Proof. reflexivity. Qed.
Head and Tail
Definition hd (default : nat) (l : natlist) : nat :=
match l with
| nil ⇒ default
| h :: t ⇒ h
end.
Definition tl (l : natlist) : natlist :=
match l with
| nil ⇒ nil
| h :: t ⇒ t
end.
Example test_hd1: hd 0 [1;2;3] = 1.
Proof. reflexivity. Qed.
Example test_hd2: hd 0 [] = 0.
Proof. reflexivity. Qed.
Example test_tl: tl [1;2;3] = [2;3].
Proof. reflexivity. Qed.
match l with
| nil ⇒ default
| h :: t ⇒ h
end.
Definition tl (l : natlist) : natlist :=
match l with
| nil ⇒ nil
| h :: t ⇒ t
end.
Example test_hd1: hd 0 [1;2;3] = 1.
Proof. reflexivity. Qed.
Example test_hd2: hd 0 [] = 0.
Proof. reflexivity. Qed.
Example test_tl: tl [1;2;3] = [2;3].
Proof. reflexivity. Qed.
Exercises
Exercise: 2 stars, standard, especially useful (list_funs)
Complete the definitions of nonzeros, oddmembers, and countoddmembers below. Have a look at the tests to understand what these functions should do.
Fixpoint nonzeros (l:natlist) : natlist
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_nonzeros:
nonzeros [0;1;0;2;3;0;0] = [1;2;3].
(* FILL IN HERE *) Admitted.
Fixpoint oddmembers (l:natlist) : natlist
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_oddmembers:
oddmembers [0;1;0;2;3;0;0] = [1;3].
(* FILL IN HERE *) Admitted.
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_nonzeros:
nonzeros [0;1;0;2;3;0;0] = [1;2;3].
(* FILL IN HERE *) Admitted.
Fixpoint oddmembers (l:natlist) : natlist
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_oddmembers:
oddmembers [0;1;0;2;3;0;0] = [1;3].
(* FILL IN HERE *) Admitted.
For the next problem, countoddmembers, we're giving you a header
    that uses the keyword Definition instead of Fixpoint.  The
    point of stating the question this way is to encourage you to
    implement the function by using already-defined functions, rather
    than writing your own recursive definition. 
Definition countoddmembers (l:natlist) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_countoddmembers1:
countoddmembers [1;0;3;1;4;5] = 4.
(* FILL IN HERE *) Admitted.
Example test_countoddmembers2:
countoddmembers [0;2;4] = 0.
(* FILL IN HERE *) Admitted.
Example test_countoddmembers3:
countoddmembers nil = 0.
(* FILL IN HERE *) Admitted.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_countoddmembers1:
countoddmembers [1;0;3;1;4;5] = 4.
(* FILL IN HERE *) Admitted.
Example test_countoddmembers2:
countoddmembers [0;2;4] = 0.
(* FILL IN HERE *) Admitted.
Example test_countoddmembers3:
countoddmembers nil = 0.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, advanced (alternate)
Complete the following definition of alternate, which interleaves two lists into one, alternating between elements taken from the first list and elements from the second. See the tests below for more specific examples.
Fixpoint alternate (l1 l2 : natlist) : natlist
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_alternate1:
alternate [1;2;3] [4;5;6] = [1;4;2;5;3;6].
(* FILL IN HERE *) Admitted.
Example test_alternate2:
alternate [1] [4;5;6] = [1;4;5;6].
(* FILL IN HERE *) Admitted.
Example test_alternate3:
alternate [1;2;3] [4] = [1;4;2;3].
(* FILL IN HERE *) Admitted.
Example test_alternate4:
alternate [] [20;30] = [20;30].
(* FILL IN HERE *) Admitted.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_alternate1:
alternate [1;2;3] [4;5;6] = [1;4;2;5;3;6].
(* FILL IN HERE *) Admitted.
Example test_alternate2:
alternate [1] [4;5;6] = [1;4;5;6].
(* FILL IN HERE *) Admitted.
Example test_alternate3:
alternate [1;2;3] [4] = [1;4;2;3].
(* FILL IN HERE *) Admitted.
Example test_alternate4:
alternate [] [20;30] = [20;30].
(* FILL IN HERE *) Admitted.
☐
Bags via Lists
Exercise: 3 stars, standard, especially useful (bag_functions)
Complete the following definitions for the functions count, sum, add, and member for bags.
Fixpoint count (v : nat) (s : bag) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
All these proofs can be completed with reflexivity. 
Example test_count1:              count 1 [1;2;3;1;4;1] = 3.
(* FILL IN HERE *) Admitted.
Example test_count2: count 6 [1;2;3;1;4;1] = 0.
(* FILL IN HERE *) Admitted.
(* FILL IN HERE *) Admitted.
Example test_count2: count 6 [1;2;3;1;4;1] = 0.
(* FILL IN HERE *) Admitted.
Multiset sum is similar to set union: sum a b contains all
    the elements of a and those of b.  (Mathematicians usually
    define union on multisets a little bit differently -- using max
    instead of sum -- which is why we don't call this operation
    union.)
 
    We've deliberately given you a header that does not give explicit
    names to the arguments.  Implement sum in terms of an
    already-defined function, without changing the header. 
Definition sum : bag → bag → bag
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_sum1: count 1 (sum [1;2;3] [1;4;1]) = 3.
(* FILL IN HERE *) Admitted.
Definition add (v : nat) (s : bag) : bag
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_add1: count 1 (add 1 [1;4;1]) = 3.
(* FILL IN HERE *) Admitted.
Example test_add2: count 5 (add 1 [1;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Fixpoint member (v : nat) (s : bag) : bool
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_member1: member 1 [1;4;1] = true.
(* FILL IN HERE *) Admitted.
Example test_member2: member 2 [1;4;1] = false.
(* FILL IN HERE *) Admitted.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_sum1: count 1 (sum [1;2;3] [1;4;1]) = 3.
(* FILL IN HERE *) Admitted.
Definition add (v : nat) (s : bag) : bag
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_add1: count 1 (add 1 [1;4;1]) = 3.
(* FILL IN HERE *) Admitted.
Example test_add2: count 5 (add 1 [1;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Fixpoint member (v : nat) (s : bag) : bool
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_member1: member 1 [1;4;1] = true.
(* FILL IN HERE *) Admitted.
Example test_member2: member 2 [1;4;1] = false.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard, optional (bag_more_functions)
Here are some more bag functions for you to practice with.
Fixpoint remove_one (v : nat) (s : bag) : bag
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_remove_one1:
count 5 (remove_one 5 [2;1;5;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_one2:
count 5 (remove_one 5 [2;1;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_one3:
count 4 (remove_one 5 [2;1;4;5;1;4]) = 2.
(* FILL IN HERE *) Admitted.
Example test_remove_one4:
count 5 (remove_one 5 [2;1;5;4;5;1;4]) = 1.
(* FILL IN HERE *) Admitted.
Fixpoint remove_all (v:nat) (s:bag) : bag
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_remove_all1: count 5 (remove_all 5 [2;1;5;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_all2: count 5 (remove_all 5 [2;1;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_all3: count 4 (remove_all 5 [2;1;4;5;1;4]) = 2.
(* FILL IN HERE *) Admitted.
Example test_remove_all4: count 5 (remove_all 5 [2;1;5;4;5;1;4;5;1;4]) = 0.
(* FILL IN HERE *) Admitted.
Fixpoint included (s1 : bag) (s2 : bag) : bool
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_included1: included [1;2] [2;1;4;1] = true.
(* FILL IN HERE *) Admitted.
Example test_included2: included [1;2;2] [2;1;4;1] = false.
(* FILL IN HERE *) Admitted.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_remove_one1:
count 5 (remove_one 5 [2;1;5;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_one2:
count 5 (remove_one 5 [2;1;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_one3:
count 4 (remove_one 5 [2;1;4;5;1;4]) = 2.
(* FILL IN HERE *) Admitted.
Example test_remove_one4:
count 5 (remove_one 5 [2;1;5;4;5;1;4]) = 1.
(* FILL IN HERE *) Admitted.
Fixpoint remove_all (v:nat) (s:bag) : bag
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_remove_all1: count 5 (remove_all 5 [2;1;5;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_all2: count 5 (remove_all 5 [2;1;4;1]) = 0.
(* FILL IN HERE *) Admitted.
Example test_remove_all3: count 4 (remove_all 5 [2;1;4;5;1;4]) = 2.
(* FILL IN HERE *) Admitted.
Example test_remove_all4: count 5 (remove_all 5 [2;1;5;4;5;1;4;5;1;4]) = 0.
(* FILL IN HERE *) Admitted.
Fixpoint included (s1 : bag) (s2 : bag) : bool
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_included1: included [1;2] [2;1;4;1] = true.
(* FILL IN HERE *) Admitted.
Example test_included2: included [1;2;2] [2;1;4;1] = false.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard, especially useful (add_inc_count)
Adding a value to a bag should increase the value's count by one. State this as a theorem and prove it in Coq.
(*
Theorem add_inc_count : ...
Proof.
...
Qed.
*)
(* Do not modify the following line: *)
Definition manual_grade_for_add_inc_count : option (nat×string) := None.
☐
Theorem add_inc_count : ...
Proof.
...
Qed.
*)
(* Do not modify the following line: *)
Definition manual_grade_for_add_inc_count : option (nat×string) := None.
☐
Reasoning About Lists
...because the [] is substituted into the
    "scrutinee" (the expression whose value is being "scrutinized" by
    the match) in the definition of app, allowing the match itself
    to be simplified. 
 
 Also, as with numbers, it is sometimes helpful to perform case
    analysis on the possible shapes (empty or non-empty) of an unknown
    list. 
Theorem tl_length_pred : ∀ l:natlist,
pred (length l) = length (tl l).
Proof.
intros l. destruct l as [| n l'].
- (* l = nil *)
reflexivity.
- (* l = cons n l' *)
reflexivity. Qed.
pred (length l) = length (tl l).
Proof.
intros l. destruct l as [| n l'].
- (* l = nil *)
reflexivity.
- (* l = cons n l' *)
reflexivity. Qed.
Here, the nil case works because we've chosen to define
    tl nil = nil. Notice that the as annotation on the destruct
    tactic here introduces two names, n and l', corresponding to
    the fact that the cons constructor for lists takes two
    arguments (the head and tail of the list it is constructing). 
 
 Usually, though, interesting theorems about lists require
    induction for their proofs.  We'll see how to do this next. 
 
 (Micro-Sermon: As we get deeper into this material, simply
    reading proof scripts will not help you very much.  Rather, it
    is important to step through the details of each one using Coq and
    think about what each step achieves.  Otherwise it is more or less
    guaranteed that the exercises will make no sense when you get to
    them.  'Nuff said.) 
Induction on Lists
-  First, show that P is true of l when l is nil.
- Then show that P is true of l when l is cons n l' for some number n and some smaller list l', assuming that P is true for l'.
Theorem app_assoc : ∀ l1 l2 l3 : natlist,
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
Proof.
intros l1 l2 l3. induction l1 as [| n l1' IHl1'].
- (* l1 = nil *)
reflexivity.
- (* l1 = cons n l1' *)
simpl. rewrite → IHl1'. reflexivity. Qed.
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
Proof.
intros l1 l2 l3. induction l1 as [| n l1' IHl1'].
- (* l1 = nil *)
reflexivity.
- (* l1 = cons n l1' *)
simpl. rewrite → IHl1'. reflexivity. Qed.
Notice that, as we saw with induction on natural numbers,
    the as... clause provided to the induction tactic gives a name
    to the induction hypothesis corresponding to the smaller list
    l1' in the cons case.
 
    Once again, this Coq proof is not especially illuminating as a
    static document -- it is easy to see what's going on if you are
    reading the proof in an interactive Coq session and you can see
    the current goal and context at each point, but this state is not
    visible in the written-down parts of the Coq proof.  So a
    natural-language proof -- one written for human readers -- should
    include more explicit signposts; in particular, it will help the
    reader stay oriented if we remind them exactly what the induction
    hypothesis is in the second case. 
 
 For comparison, here is an informal proof of the same theorem. 
 
 Theorem: For all lists l1, l2, and l3,
               (l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
 
   Proof: By induction on l1.
 
 
 
 For a slightly more involved example of inductive proof over
    lists, suppose we use app to define a list-reversing function
    rev: 
-  First, suppose l1 = [].  We must show
 ([] ++ l2) ++ l3 = [] ++ (l2 ++ l3), which follows directly from the definition of ++.
-  Next, suppose l1 = n::l1', with
 (l1' ++ l2) ++ l3 = l1' ++ (l2 ++ l3) (the induction hypothesis). We must show
 ((n :: l1') ++ l2) ++ l3 = (n :: l1') ++ (l2 ++ l3). By the definition of ++, this follows from
 n :: ((l1' ++ l2) ++ l3) = n :: (l1' ++ (l2 ++ l3)), which is immediate from the induction hypothesis. ☐
Reversing a List
Fixpoint rev (l:natlist) : natlist :=
match l with
| nil ⇒ nil
| h :: t ⇒ rev t ++ [h]
end.
Example test_rev1: rev [1;2;3] = [3;2;1].
Proof. reflexivity. Qed.
Example test_rev2: rev nil = nil.
Proof. reflexivity. Qed.
match l with
| nil ⇒ nil
| h :: t ⇒ rev t ++ [h]
end.
Example test_rev1: rev [1;2;3] = [3;2;1].
Proof. reflexivity. Qed.
Example test_rev2: rev nil = nil.
Proof. reflexivity. Qed.
For something a bit more challenging, let's prove that
    reversing a list does not change its length.  Our first attempt
    gets stuck in the successor case... 
Theorem rev_length_firsttry : ∀ l : natlist,
length (rev l) = length l.
Proof.
intros l. induction l as [| n l' IHl'].
- (* l = nil *)
reflexivity.
- (* l = n :: l' *)
(* This is the tricky case. Let's begin as usual
by simplifying. *)
simpl.
(* Now we seem to be stuck: the goal is an equality
involving ++, but we don't have any useful equations
in either the immediate context or in the global
environment! We can make a little progress by using
the IH to rewrite the goal... *)
rewrite <- IHl'.
(* ... but now we can't go any further. *)
Abort.
length (rev l) = length l.
Proof.
intros l. induction l as [| n l' IHl'].
- (* l = nil *)
reflexivity.
- (* l = n :: l' *)
(* This is the tricky case. Let's begin as usual
by simplifying. *)
simpl.
(* Now we seem to be stuck: the goal is an equality
involving ++, but we don't have any useful equations
in either the immediate context or in the global
environment! We can make a little progress by using
the IH to rewrite the goal... *)
rewrite <- IHl'.
(* ... but now we can't go any further. *)
Abort.
So let's take the equation relating ++ and length that
    would have enabled us to make progress at the point where we got
    stuck and state it as a separate lemma. 
Theorem app_length : ∀ l1 l2 : natlist,
length (l1 ++ l2) = (length l1) + (length l2).
Proof.
(* WORKED IN CLASS *)
intros l1 l2. induction l1 as [| n l1' IHl1'].
- (* l1 = nil *)
reflexivity.
- (* l1 = cons *)
simpl. rewrite → IHl1'. reflexivity. Qed.
length (l1 ++ l2) = (length l1) + (length l2).
Proof.
(* WORKED IN CLASS *)
intros l1 l2. induction l1 as [| n l1' IHl1'].
- (* l1 = nil *)
reflexivity.
- (* l1 = cons *)
simpl. rewrite → IHl1'. reflexivity. Qed.
Note that, to make the lemma as general as possible, we
    quantify over all natlists, not just those that result from an
    application of rev.  This seems natural, because the truth of
    the goal clearly doesn't depend on the list having been reversed.
    Moreover, it is easier to prove the more general property. 
 
 Now we can complete the original proof. 
Theorem rev_length : ∀ l : natlist,
length (rev l) = length l.
Proof.
intros l. induction l as [| n l' IHl'].
- (* l = nil *)
reflexivity.
- (* l = cons *)
simpl. rewrite → app_length.
simpl. rewrite → IHl'. rewrite add_comm.
reflexivity.
Qed.
length (rev l) = length l.
Proof.
intros l. induction l as [| n l' IHl'].
- (* l = nil *)
reflexivity.
- (* l = cons *)
simpl. rewrite → app_length.
simpl. rewrite → IHl'. rewrite add_comm.
reflexivity.
Qed.
For comparison, here are informal proofs of these two theorems:
 
    Theorem: For all lists l1 and l2,
       length (l1 ++ l2) = length l1 + length l2.
 
    Proof: By induction on l1.
 
 
 Theorem: For all lists l, length (rev l) = length l.
 
    Proof: By induction on l.
 
 
 The style of these proofs is rather longwinded and pedantic.
    After reading a couple like this, we might find it easier to
    follow proofs that give fewer details (which we can easily work
    out in our own minds or on scratch paper if necessary) and just
    highlight the non-obvious steps.  In this more compressed style,
    the above proof might look like this: 
 
 Theorem: For all lists l, length (rev l) = length l.
 
    Proof: First observe, by a straightforward induction on l,
     that length (l ++ [n]) = S (length l) for any l.  The main
     property then follows by another induction on l, using the
     observation together with the induction hypothesis in the case
     where l = n'::l'. ☐ 
 
 Which style is preferable in a given situation depends on
    the sophistication of the expected audience and how similar the
    proof at hand is to ones that they will already be familiar with.
    The more pedantic style is a good default for our present purposes
    because we're trying to be ultra-clear about the details. 
-  First, suppose l1 = [].  We must show
 length ([] ++ l2) = length [] + length l2, which follows directly from the definitions of length, ++, and plus.
-  Next, suppose l1 = n::l1', with
 length (l1' ++ l2) = length l1' + length l2. We must show
 length ((n::l1') ++ l2) = length (n::l1') + length l2. This follows directly from the definitions of length and ++ together with the induction hypothesis. ☐
-  First, suppose l = [].  We must show
 length (rev []) = length [], which follows directly from the definitions of length and rev.
-  Next, suppose l = n::l', with
 length (rev l') = length l'. We must show
 length (rev (n :: l')) = length (n :: l'). By the definition of rev, this follows from
 length ((rev l') ++ [n]) = S (length l') which, by the previous lemma, is the same as
 length (rev l') + length [n] = S (length l'). This follows directly from the induction hypothesis and the definition of length. ☐
Search
Or say you've forgotten the name of the theorem showing that plus
    is commutative.  You can use a pattern to search for all theorems
    involving the equality of two additions. 
You'll see a lot of results there, nearly all of them from the
    standard library.  To restrict the results, you can search inside
    a particular module: 
You can also make the search more precise by using variables in
    the search pattern instead of wildcards: 
(The question mark in front of the variable is needed to indicate
    that it is a variable in the search pattern, rather than a defined
    identifier that is expected to be in scope currently.) 
 
 Keep Search in mind as you do the following exercises and
    throughout the rest of the book; it can save you a lot of time! 
Theorem app_nil_r : ∀ l : natlist,
l ++ [] = l.
Proof.
(* FILL IN HERE *) Admitted.
Theorem rev_app_distr: ∀ l1 l2 : natlist,
rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof.
(* FILL IN HERE *) Admitted.
l ++ [] = l.
Proof.
(* FILL IN HERE *) Admitted.
Theorem rev_app_distr: ∀ l1 l2 : natlist,
rev (l1 ++ l2) = rev l2 ++ rev l1.
Proof.
(* FILL IN HERE *) Admitted.
An involution is a function that is its own inverse. That is,
    applying the function twice yield the original input. 
There is a short solution to the next one.  If you find yourself
    getting tangled up, step back and try to look for a simpler
    way. 
Theorem app_assoc4 : ∀ l1 l2 l3 l4 : natlist,
l1 ++ (l2 ++ (l3 ++ l4)) = ((l1 ++ l2) ++ l3) ++ l4.
Proof.
(* FILL IN HERE *) Admitted.
l1 ++ (l2 ++ (l3 ++ l4)) = ((l1 ++ l2) ++ l3) ++ l4.
Proof.
(* FILL IN HERE *) Admitted.
An exercise about your implementation of nonzeros: 
Lemma nonzeros_app : ∀ l1 l2 : natlist,
nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2).
Proof.
(* FILL IN HERE *) Admitted.
☐
nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, standard (eqblist)
Fill in the definition of eqblist, which compares lists of numbers for equality. Prove that eqblist l l yields true for every list l.
Fixpoint eqblist (l1 l2 : natlist) : bool
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_eqblist1 :
(eqblist nil nil = true).
(* FILL IN HERE *) Admitted.
Example test_eqblist2 :
eqblist [1;2;3] [1;2;3] = true.
(* FILL IN HERE *) Admitted.
Example test_eqblist3 :
eqblist [1;2;3] [1;2;4] = false.
(* FILL IN HERE *) Admitted.
Theorem eqblist_refl : ∀ l:natlist,
true = eqblist l l.
Proof.
(* FILL IN HERE *) Admitted.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_eqblist1 :
(eqblist nil nil = true).
(* FILL IN HERE *) Admitted.
Example test_eqblist2 :
eqblist [1;2;3] [1;2;3] = true.
(* FILL IN HERE *) Admitted.
Example test_eqblist3 :
eqblist [1;2;3] [1;2;4] = false.
(* FILL IN HERE *) Admitted.
Theorem eqblist_refl : ∀ l:natlist,
true = eqblist l l.
Proof.
(* FILL IN HERE *) Admitted.
☐
List Exercises, Part 2
Exercise: 1 star, standard (count_member_nonzero)
Theorem count_member_nonzero : ∀ (s : bag),
1 <=? (count 1 (1 :: s)) = true.
Proof.
(* FILL IN HERE *) Admitted.
☐
1 <=? (count 1 (1 :: s)) = true.
Proof.
(* FILL IN HERE *) Admitted.
☐
Theorem leb_n_Sn : ∀ n,
n <=? (S n) = true.
Proof.
intros n. induction n as [| n' IHn'].
- (* 0 *)
simpl. reflexivity.
- (* S n' *)
simpl. rewrite IHn'. reflexivity. Qed.
n <=? (S n) = true.
Proof.
intros n. induction n as [| n' IHn'].
- (* 0 *)
simpl. reflexivity.
- (* S n' *)
simpl. rewrite IHn'. reflexivity. Qed.
Before doing the next exercise, make sure you've filled in the
   definition of remove_one above. 
Exercise: 3 stars, advanced (remove_does_not_increase_count)
Theorem remove_does_not_increase_count: ∀ (s : bag),
(count 0 (remove_one 0 s)) <=? (count 0 s) = true.
Proof.
(* FILL IN HERE *) Admitted.
☐
(count 0 (remove_one 0 s)) <=? (count 0 s) = true.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 3 stars, standard, optional (bag_count_sum)
Write down an interesting theorem bag_count_sum about bags involving the functions count and sum, and prove it using Coq. (You may find that the difficulty of the proof depends on how you defined count! Hint: If you defined count using =? you may find it useful to know that destruct works on arbitrary expressions, not just simple identifiers.)
(* FILL IN HERE *)
☐
☐
Exercise: 3 stars, advanced (involution_injective)
Theorem involution_injective : ∀ (f : nat → nat),
(∀ n : nat, n = f (f n)) → (∀ n1 n2 : nat, f n1 = f n2 → n1 = n2).
Proof.
(* FILL IN HERE *) Admitted.
☐
(∀ n : nat, n = f (f n)) → (∀ n1 n2 : nat, f n1 = f n2 → n1 = n2).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, advanced (rev_injective)
Prove that rev is injective. Do not prove this by induction -- that would be hard. Instead, re-use the same proof technique that you used for involution_injective. (But: Don't try to use that exercise directly as a lemma: the types are not the same!)
Theorem rev_injective : ∀ (l1 l2 : natlist),
rev l1 = rev l2 → l1 = l2.
Proof.
(* FILL IN HERE *) Admitted.
☐
rev l1 = rev l2 → l1 = l2.
Proof.
(* FILL IN HERE *) Admitted.
☐
Options
Fixpoint nth_bad (l:natlist) (n:nat) : nat :=
match l with
| nil ⇒ 42
| a :: l' ⇒ match n with
| 0 ⇒ a
| S n' ⇒ nth_bad l' n'
end
end.
match l with
| nil ⇒ 42
| a :: l' ⇒ match n with
| 0 ⇒ a
| S n' ⇒ nth_bad l' n'
end
end.
This solution is not so good: If nth_bad returns 42, we
    can't tell whether that value actually appears on the input
    without further processing. A better alternative is to change the
    return type of nth_bad to include an error value as a possible
    outcome. We call this type natoption. 
Inductive natoption : Type :=
| Some (n : nat)
| None.
(* Note that we've capitalized the constructor names None and
Some, following their definition in Coq's standard library. In
general, constructor (and variable) names can begin with either
capital or lowercase letters. *)
| Some (n : nat)
| None.
(* Note that we've capitalized the constructor names None and
Some, following their definition in Coq's standard library. In
general, constructor (and variable) names can begin with either
capital or lowercase letters. *)
We can then change the above definition of nth_bad to
    return None when the list is too short and Some a when the
    list has enough members and a appears at position n. We call
    this new function nth_error to indicate that it may result in an
    error. As we see here, constructors of inductive definitions can
    be capitalized. 
Fixpoint nth_error (l:natlist) (n:nat) : natoption :=
match l with
| nil ⇒ None
| a :: l' ⇒ match n with
| O ⇒ Some a
| S n' ⇒ nth_error l' n'
end
end.
Example test_nth_error1 : nth_error [4;5;6;7] 0 = Some 4.
match l with
| nil ⇒ None
| a :: l' ⇒ match n with
| O ⇒ Some a
| S n' ⇒ nth_error l' n'
end
end.
Example test_nth_error1 : nth_error [4;5;6;7] 0 = Some 4.
Proof. reflexivity. Qed.
Example test_nth_error2 : nth_error [4;5;6;7] 3 = Some 7.
Proof. reflexivity. Qed.
Example test_nth_error3 : nth_error [4;5;6;7] 9 = None.
Proof. reflexivity. Qed.
(In the HTML version, the boilerplate proofs of these
    examples are elided.  Click on a box if you want to see the
    details.) 
 
 The function below pulls the nat out of a natoption, returning
    a supplied default in the None case. 
Definition option_elim (d : nat) (o : natoption) : nat :=
match o with
| Some n' ⇒ n'
| None ⇒ d
end.
match o with
| Some n' ⇒ n'
| None ⇒ d
end.
Exercise: 2 stars, standard (hd_error)
Using the same idea, fix the hd function from earlier so we don't have to pass a default element for the nil case.
Definition hd_error (l : natlist) : natoption
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_hd_error1 : hd_error [] = None.
(* FILL IN HERE *) Admitted.
Example test_hd_error2 : hd_error [1] = Some 1.
(* FILL IN HERE *) Admitted.
Example test_hd_error3 : hd_error [5;6] = Some 5.
(* FILL IN HERE *) Admitted.
☐
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Example test_hd_error1 : hd_error [] = None.
(* FILL IN HERE *) Admitted.
Example test_hd_error2 : hd_error [1] = Some 1.
(* FILL IN HERE *) Admitted.
Example test_hd_error3 : hd_error [5;6] = Some 5.
(* FILL IN HERE *) Admitted.
☐
Exercise: 1 star, standard, optional (option_elim_hd)
This exercise relates your new hd_error to the old hd.
Theorem option_elim_hd : ∀ (l:natlist) (default:nat),
hd default l = option_elim default (hd_error l).
Proof.
(* FILL IN HERE *) Admitted.
☐
hd default l = option_elim default (hd_error l).
Proof.
(* FILL IN HERE *) Admitted.
☐
Partial Maps
Internally, an id is just a number.  Introducing a separate type
    by wrapping each nat with the tag Id makes definitions more
    readable and gives us flexibility to change representations later
    if we want to. 
 
 We'll also need an equality test for ids: 
Module PartialMap.
Export NatList. (* make the definitions from NatList available here *)
Inductive partial_map : Type :=
| empty
| record (i : id) (v : nat) (m : partial_map).
Export NatList. (* make the definitions from NatList available here *)
Inductive partial_map : Type :=
| empty
| record (i : id) (v : nat) (m : partial_map).
This declaration can be read: "There are two ways to construct a
    partial_map: either using the constructor empty to represent an
    empty partial map, or applying the constructor record to
    a key, a value, and an existing partial_map to construct a
    partial_map with an additional key-to-value mapping." 
 
 The update function overrides the entry for a given key in a
    partial map by shadowing it with a new one (or simply adds a new
    entry if the given key is not already present). 
Last, the find function searches a partial_map for a given
    key.  It returns None if the key was not found and Some val if
    the key was associated with val. If the same key is mapped to
    multiple values, find will return the first one it
    encounters. 
Fixpoint find (x : id) (d : partial_map) : natoption :=
match d with
| empty ⇒ None
| record y v d' ⇒ if eqb_id x y
then Some v
else find x d'
end.
match d with
| empty ⇒ None
| record y v d' ⇒ if eqb_id x y
then Some v
else find x d'
end.
Theorem update_eq :
∀ (d : partial_map) (x : id) (v: nat),
find x (update d x v) = Some v.
Proof.
(* FILL IN HERE *) Admitted.
☐
∀ (d : partial_map) (x : id) (v: nat),
find x (update d x v) = Some v.
Proof.
(* FILL IN HERE *) Admitted.
☐
