Papers by Andrew Childs

Contents


Related links: arXiv, Google Scholar

Preprints

  1. Time independence does not limit information flow. II. The case with ancillas
    T. C. Mooney, Dong Yuan, Adam Ehrenberg, Christopher L. Baldwin, Alexey V. Gorshkov, and Andrew M. Childs
  2. Time independence does not limit information flow. I. The free-particle case
    Dong Yuan, Chao Yin, T. C. Mooney, Christopher L. Baldwin, Andrew M. Childs, and Alexey V. Gorshkov
  3. Quantum routing and entanglement dynamics through bottlenecks
    Dhruv Devulapalli, Chao Yin, Andrew Y. Guo, Eddie Schoute, Andrew M. Childs, Alexey V. Gorshkov, and Andrew Lucas
  4. Translation-invariant quantum algorithms for ordered search are optimal
    Joseph Carolan, Andrew M. Childs, Matt Kovacs-Deak, and Luke Schaeffer
  5. Optimal routing protocols for reconfigurable atom arrays
    Nathan Constantinides, Ali Fahimniya, Dhruv Devulapalli, Dolev Bluvstein, Michael J. Gullans, J. V. Porto, Andrew M. Childs, and Alexey V. Gorshkov
  6. Low-depth quantum symmetrization
    Zhenning Liu, Andrew M. Childs, and Daniel Gottesman
  7. Laplace transform based quantum eigenvalue transformation via linear combination of Hamiltonian simulation
    Dong An, Andrew M. Childs, Lin Lin, and Lexing Ying
  8. Efficient preparation of Dicke states
    Jeffery Yu, Sean R. Muleady, Yu-Xin Wang, Nathan Schine, Alexey V. Gorshkov, and Andrew M. Childs
  9. Quantum algorithms for simulating nuclear effective field theories
    James D. Watson, Jacob Bringewatt, Alexander F. Shaw, Andrew M. Childs, Alexey V. Gorshkov, and Zohreh Davoudi
  10. Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters
    Dong An, Andrew M. Childs, and Lin Lin

Publications

  1. Entanglement accelerates quantum simulation
    Qi Zhao, You Zhou, and Andrew M. Childs
  2. Quantum divide and conquer
    Andrew M. Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and Daochen Wang
  3. Efficient and practical Hamiltonian simulation from time-dependent product formulas
    Jan Lukas Bosse, Andrew M. Childs, Charles Derby, Filippo Maria Gambetta, Ashley Montanaro, Raul A. Santos
  4. Efficiently verifiable quantum advantage on near-term analog quantum simulators
    Zhenning Liu, Dhruv Devulapalli, Dominik Hangleiter, Yi-Kai Liu, Alicia J. Kollár, Alexey V. Gorshkov, and Andrew M. Childs
  5. Streaming quantum state purification
    Andrew M. Childs, Honghao Fu, Debbie Leung, Zhi Li, Maris Ozols, and Vedang Vyas
  6. Toward a 2D local implementation of quantum LDPC codes
    Noah Berthusen, Dhruv Devulapalli, Eddie Schoute, Andrew M. Childs, Michael J. Gullans, Alexey V. Gorshkov, and Daniel Gottesman
  7. Quantum routing with teleportation
    Dhruv Devulapalli, Eddie Schoute, Aniruddha Bapat, Andrew M. Childs, and Alexey V. Gorshkov
  8. Quantum algorithm for estimating volumes of convex bodies
    Shouvanik Chakrabarti, Andrew M. Childs, Shih-Han Hung, Tongyang Li, Chunhao Wang, and Xiaodi Wu
  9. Advantages and limitations of quantum routing
    Aniruddha Bapat, Andrew M. Childs, Alexey V. Gorshkov, and Eddie Schoute
  10. Hamiltonian simulation with random inputs
    Qi Zhao, You Zhou, Alexander F. Shaw, Tongyang Li, and Andrew M. Childs
  11. Quantum algorithms and the power of forgetting
    Andrew M. Childs, Matthew Coudron, and Amin Shiraz Gilani
  12. Quantum simulation of real-space dynamics
    Andrew M. Childs, Jiaqi Leng, Tongyang Li, Jin-Peng Liu, and Chenyi Zhang
  13. Implementing a fast unbounded quantum fanout gate using power-law interactions
    Andrew Y. Guo, Abhinav Deshpande, Su-Kuan Chu, Zachary Eldredge, Przemyslaw Bienias, Dhruv Devulapalli, Yuan Su, Andrew M. Childs, and Alexey V. Gorshkov
  14. Quantum algorithms for sampling log-concave distributions and estimating normalizing constants
    Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, and Ruizhe Zhang
  15. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice
    Aaron W. Young, William J. Eckner, Nathan Schine, Andrew M. Childs, and Adam M. Kaufman
  16. Efficient product formulas for commutators and applications to quantum simulation
    Yu-An Chen, Andrew M. Childs, Mohammad Hafezi, Zhang Jiang, Hwanmun Kim, and Yijia Xu
  17. High-precision quantum algorithms for partial differential equations
    Andrew M. Childs, Jin-Peng Liu, and Aaron Ostrander
  18. Nearly optimal time-independent reversal of a spin chain
    Aniruddha Bapat, Eddie Schoute, Alexey V. Gorshkov, and Andrew M. Childs
  19. Efficient quantum algorithm for dissipative nonlinear differential equations
    Jin-Peng Liu, Herman Øie Kolden, Hari K. Krovi, Nuno F. Loureiro, Konstantina Trivisa, and Andrew M. Childs
  20. Quantum routing with fast reversals
    Aniruddha Bapat, Andrew M. Childs, Alexey V. Gorshkov, Samuel King, Eddie Schoute, and Hrishee Shastri
  21. Quantum query complexity with matrix-vector products
    Andrew M. Childs, Shih-Han Hung, and Tongyang Li
  22. Quantum exploration algorithms for multi-armed bandits
    Daochen Wang, Xuchen You, Tongyang Li, and Andrew M. Childs
  23. Theory of Trotter error with commutator scaling
    Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu
  24. Non-interactive classical verification of quantum computation
    Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung
  25. Symmetries, graph properties, and quantum speedups
    Shalev Ben-David, Andrew M. Childs, András Gilyén, William Kretschmer, Supartha Podder, and Daochen Wang
  26. Signaling and scrambling with strongly long-range interactions
    Andrew Y. Guo, Minh C. Tran, Andrew M. Childs, Alexey V. Gorshkov, and Zhe-Xuan Gong
  27. Destructive error interference in product-formula lattice simulation
    Minh C. Tran, Su-Kuan Chu, Yuan Su, Andrew M. Childs, and Alexey V. Gorshkov
  28. Time-dependent Hamiltonian simulation with L1-norm scaling
    Dominic W. Berry, Andrew M. Childs, Yuan Su, Xin Wang, and Nathan Wiebe
  29. Quantum coupon collector
    Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M. Childs, Robin Kothari, Ansis Rosmanis, and Ronald de Wolf
  30. Quantum spectral methods for differential equations
    Andrew M. Childs and Jin-Peng Liu
  31. Quantum algorithms and lower bounds for convex optimization
    Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu
  32. Faster quantum simulation by randomization
    Andrew M. Childs, Aaron Ostrander, and Yuan Su
  33. Nearly optimal lattice simulation by product formulas
    Andrew M. Childs and Yuan Su
  34. Locality and digital quantum simulation of power-law interactions
    Minh C. Tran, Andrew Y. Guo, Yuan Su, James R. Garrison, Zachary Eldredge, Michael Foss-Feig, Andrew M. Childs, and Alexey V. Gorshkov
  35. Circuit transformations for quantum architectures
    Andrew M. Childs, Eddie Schoute, and Cem M. Unsal
  36. Toward the first quantum simulation with quantum speedup
    Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su
  37. Automated optimization of large quantum circuits with continuous parameters
    Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov
  38. Quantum algorithm for multivariate polynomial interpolation
    Jianxin Chen, Andrew M. Childs, and Shih-Han Hung
  39. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision
    Andrew M. Childs, Robin Kothari, and Rolando D. Somma
  40. Quantum algorithm for linear differential equations with exponentially improved dependence on precision
    Dominic W. Berry, Andrew M. Childs, Aaron Ostrander, and Guoming Wang
  41. Efficient simulation of sparse Markovian quantum dynamics
    Andrew M. Childs and Tongyang Li
  42. Optimal quantum algorithm for polynomial interpolation
    Andrew M. Childs, Wim van Dam, Shih-Han Hung, and Igor E. Shparlinski
  43. Optimal state discrimination and unstructured search in nonlinear quantum mechanics
    Andrew M. Childs and Joshua Young
  44. Complexity of the XY antiferromagnet at fixed magnetization
    Andrew M. Childs, David Gosset, and Zak Webb
  45. Hamiltonian simulation with nearly optimal dependence on all parameters
    Dominic W. Berry, Andrew M. Childs, and Robin Kothari
  46. Simulating Hamiltonian dynamics with a truncated Taylor series
    Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma
  47. Momentum switches
    Andrew M. Childs, David Gosset, Daniel Nagaj, Mouktik Raha, and Zak Webb
  48. Quantum computation of discrete logarithms in semigroups
    Andrew M. Childs and Gábor Ivanyos
  49. Spatial search by continuous-time quantum walks on crystal lattices
    Andrew M. Childs and Yimin Ge
  50. The Bose-Hubbard model is QMA-complete
    Andrew M. Childs, David Gosset, and Zak Webb
  51. Exponential improvement in precision for simulating sparse Hamiltonians
    Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma
  52. The computational power of matchgates and the XY interaction on arbitrary graphs
    Daniel J. Brod and Andrew M. Childs
  53. Interpolatability distinguishes LOCC from separable von Neumann measurements
    Andrew M. Childs, Debbie Leung, Laura Mancinska, and Maris Ozols
  54. Constructing elliptic curve isogenies in quantum subexponential time
    Andrew M. Childs, David Jao, and Vladimir Soukharev
  55. Product formulas for exponentials of commutators
    Andrew M. Childs and Nathan Wiebe
  56. A time-efficient quantum walk for 3-distinctness using nested updates
    Andrew M. Childs, Stacey Jeffery, Robin Kothari, and Frédéric Magniez
  57. Easy and hard functions for the Boolean hidden shift problem
    Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler
  58. A framework for bounding nonlocality of state discrimination
    Andrew M. Childs, Debbie Leung, Laura Mancinska, and Maris Ozols
  59. Universal computation by multi-particle quantum walk
    Andrew M. Childs, David Gosset, and Zak Webb
  60. Levinson’s theorem for graphs II
    Andrew M. Childs and David Gosset
  61. Hamiltonian simulation using linear combinations of unitary operations
    Andrew M. Childs and Nathan Wiebe
  62. The quantum query complexity of read-many formulas
    Andrew M. Childs, Shelby Kimmel, and Robin Kothari
  63. Black-box Hamiltonian simulation and unitary implementation
    Dominic W. Berry and Andrew M. Childs
  64. Levinson’s theorem for graphs
    Andrew M. Childs and DJ Strouse
  65. Quantum property testing for bounded-degree graphs
    Andris Ambainis, Andrew M. Childs, and Yi-Kai Liu
  66. Quantum query complexity of minor-closed graph properties
    Andrew M. Childs and Robin Kothari
  67. Simulating sparse Hamiltonians with star decompositions
    Andrew M. Childs and Robin Kothari
  68. Characterization of universal two-qubit Hamiltonians
    Andrew M. Childs, Debbie Leung, Laura Mancinska, and Maris Ozols
  69. Limitations on the simulation of non-sparse Hamiltonians
    Andrew M. Childs and Robin Kothari
  70. The quantum query complexity of certification
    Andris Ambainis, Andrew M. Childs, François Le Gall, and Seiichiro Tani
  71. On the relationship between continuous- and discrete-time quantum walk
    Andrew M. Childs
  72. Discrete-query quantum algorithm for NAND trees
    Andrew M. Childs, Richard Cleve, Stephen P. Jordan, and David Yonge-Mallo
  73. Universal computation by quantum walk
    Andrew M. Childs
  74. Quantum algorithms for algebraic problems
    Andrew M. Childs and Wim van Dam
  75. Optimal quantum adversary lower bounds for ordered search
    Andrew M. Childs and Troy Lee
  76. Quantum algorithms for hidden nonlinear structures
    Andrew M. Childs, Leonard J. Schulman, and Umesh V. Vazirani
  77. Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on a quantum computer
    Andris Ambainis, Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and Shengyu Zhang
  78. Improved quantum algorithms for the ordered search problem via semidefinite programming
    Andrew M. Childs, Andrew J. Landahl, and Pablo A. Parrilo
  79. On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems
    Andrew M. Childs and Pawel Wocjan
  80. Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem
    Andrew M. Childs, Aram W. Harrow, and Pawel Wocjan
  81. Quantum algorithm for a generalized hidden shift problem
    Andrew M. Childs and Wim van Dam
  82. The limitations of nice mutually unbiased bases
    Michael Aschbacher, Andrew M. Childs, and Pawel Wocjan
  83. Optimal measurements for the dihedral hidden subgroup problem
    Dave Bacon, Andrew M. Childs, and Wim van Dam
  84. Two-way quantum communication channels
    Andrew M. Childs, Debbie W. Leung, and H.-K. Lo
  85. Quantum algorithms for subset finding
    Andrew M. Childs and Jason M. Eisenberg
  86. From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
    Dave Bacon, Andrew M. Childs, and Wim van Dam
  87. Secure assisted quantum computation
    Andrew M. Childs
  88. Unified derivations of measurement-based schemes for quantum computation
    Andrew M. Childs, Debbie W. Leung, and Michael A. Nielsen
  89. Spatial search and the Dirac equation
    Andrew M. Childs and Jeffrey Goldstone
  90. Spatial search by quantum walk
    Andrew M. Childs and Jeffrey Goldstone
  91. Reversible simulation of bipartite product Hamiltonians
    Andrew M. Childs, Debbie W. Leung, and Guifre Vidal
  92. Lower bounds on the complexity of simulating quantum gates
    Andrew M. Childs, Henry L. Haselgrove, and Michael A. Nielsen
  93. Exponential algorithmic speedup by quantum walk
    Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A. Spielman
  94. Asymptotic entanglement capacity of the Ising and anisotropic Heisenberg interactions
    Andrew M. Childs, Debbie W. Leung, Frank Verstraete, and Guifre Vidal
  95. Quantum search by measurement
    Andrew M. Childs, Enrico Deotto, Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Andrew J. Landahl
  96. Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces
    Michael A. Nielsen, Michael J. Bremner, Jennifer L. Dodd, Andrew M. Childs, and Christopher M. Dawson
  97. An example of the difference between quantum and classical random walks
    Andrew M. Childs, Edward Farhi, and Sam Gutmann
  98. Finding cliques by quantum adiabatic evolution
    Andrew M. Childs, Edward Farhi, Jeffrey Goldstone, and Sam Gutmann
  99. Robustness of adiabatic quantum computation
    Andrew M. Childs, Edward Farhi, and John Preskill
  100. Universal simulation of Markovian quantum dynamics
    Dave Bacon, Andrew M. Childs, Isaac L. Chuang, Julia Kempe, Debbie Leung, and Xinlan Zhou
  101. Realization of quantum process tomography in NMR
    Andrew M. Childs, Isaac L. Chuang, and Debbie W. Leung
  102. Exact sampling from non-attractive distributions using summary states
    Andrew M. Childs, Ryan B. Patterson, and David J. C. MacKay
  103. Universal quantum computation with two-level trapped ions
    Andrew M. Childs and Isaac L. Chuang
  104. Quantum information and precision measurement
    Andrew M. Childs, John Preskill, and Joseph Renes
  105. A model for MeV Cn track damage in YIG
    Thomas A. Tombrello, Andrew M. Childs, and John W. Hartman
  106. Simulation of keV clusters incident on gold targets
    Andrew M. Childs, Mark H. Shapiro, and Thomas A. Tombrello

Commentary

  1. Quantum computing: Quantum advantage deferred
    Andrew M. Childs
  2. Andrew M. Childs

Thesis