
Distributed Prototyping from

Validated Specifications

David Hansel

Reactive Systems, 120-B East Broad Street, Falls Church VA 22046, USA

Rance Cleaveland, Scott A. Smolka ∗
Department of Computer Science, SUNY at Stony Brook, Stony Brook NY 11794,

USA

Abstract

We present vpl2cxx, a translator that automatically generates efficient, fully dis-
tributed C++ code from high-level system models specified in the mathematically
well-founded VPL design language. As the Concurrency Workbench of the New
Century (CWB-NC) verification tool includes a front-end for VPL, designers may
use the full range of automatic verification and simulation checks provided by this
tool on their VPL system designs before invoking the translator, thereby generating
distributed prototypes from validated specifications. Besides being fully distributed,
the code generated by vpl2cxx is highly readable and portable to a host of execution
environments and real-time operating systems. This is achieved by encapsulating all
generated code dealing with low-level interprocess communication issues in a library
for synchronous communication, which in turn is built upon the Adaptive Commu-
nication Environment (ACE) client-server network programming interface. Finally,
example applications show that the performance of the generated code is very good,
especially for prototyping purposes. We discuss two such examples, including the
RETHER real-time Ethernet protocol for voice and video applications.

Key words: Automatic code generation, Concurrency Workbench of the New
Century (CWB-NC), Adaptive Communication Environment (ACE), model
checking, rapid system prototyping

∗ Corresponding Author.
Email addresses: hansel@reactive-systems.com (David Hansel), rance@cs.sunysb.edu

(Rance Cleaveland), sas@cs.sunysb.edu (Scott A. Smolka).
URLs: www.reactive-systems.com (David Hansel), www.cs.sunysb.edu/ rance (Rance

Cleaveland), www.cs.sunysb.edu/ sas (Scott A. Smolka).

Preprint submitted to Journal of Systems and Software 28 August 2003

CWB-NC Properties

Codevpl2cxx

Model (VPL) Tool Artifact

Fig. 1. Overview of model-based code generation.

1 Introduction

Ideally, developers of software for embedded and reactive systems would like to be able
to produce high-level designs of their software that are abstract, understandable to do-
main/application experts, executable, and automatically verifiable. They would then be able
to automatically generate efficient and certified code from their designs that can run on a
wide variety of execution platforms and real-time operating systems. Even if the code pro-
duced was not production-quality, it would at least function as a serviceable rapid system
prototype that could be used to obtain useful feedback on run-time issues.

In this paper, we report on work inspired by this ideal. In particular, we present a framework
in which systems are specified in VPL, an abstract system design language based on value-
passing CCS, Milner’s well-known process calculus (Milner, 1989). VPL specifications can be
processed using the front-end generated by the Process Algebra Compiler (PAC) (Cleaveland
et al., 1995) for the Concurrency Workbench of the New Century (CWB-NC) (Cleaveland
and Sims, 1996). 1 The automatic simulation and verification facilities of the CWB-NC,
which include model checking, equivalence checking and refinement checking, can then be
applied to VPL designs in order to check its correctness. The tool described in the current
paper may be used to generate C++ prototypes automatically from the analyzed designs. We
refer to this approach to system design and implementation as model-based code generation;
Figure 1 gives an overview of this idea.

Our code generator, named vpl2cxx, uses the ACE (ADAPTIVE Communication Environ-
ment) network programming interface (Schmidt and Huston, 2002) so that the code it pro-
duces is portable to any operating system containing an implementation of the relevant ACE
libraries. vpl2cxx also implements two efficient, fully distributed algorithms for scheduling

1 The CWB-NC was formerly known as the NCSU Concurrency Workbench.

2

input and output statements offered by different processes in a system: a randomized algo-
rithm for the case where no restrictions are placed on the use of input and output commands
as guards in VPL nondeterministic select statements; and a deterministic algorithm for
VPL specifications in which output guards are prohibited, á la the programming languages
occam (Jones, 1989) and Ada 95 (Taft and Duff, 1997). The randomized algorithm places no
restrictions at the VPL level regarding the use of nondeterminism, and the resulting code is
a faithful implementation of the VPL description from which it is derived.

Finally, the generated C++ code is highly readable—owing largely to the fact that all gen-
erated code dealing with low-level interprocess communication issues is encapsulated in a
library for synchronous communication, which is implemented as a layer on top of the ACE
NPI—and bears a strong structural resemblance to the corresponding VPL specification.
Readability of the generated code facilitates code maintenance and evolution, and it is also
important for promoting acceptance of this technology, since engineers can inspect the re-
sulting C++ code manually.

To assess the feasibility of the proposed approach, we have applied vpl2cxx to several ex-
amples, including the well-known dining philosophers problem and the RETHER real-time
Ethernet protocol for voice and video applications (RNI01, 2001). Our performance figures
indicate that code produced by vpl2cxx delivers more-than-acceptable performance for a
distributed prototype.

The focus of this paper will be code generation, that is, the rapid prototyping of distributed
implementations from VPL designs. A closer examination of the PAC front-end generator
and the Workbench’s verification and simulation capabilities can be found in (Cleaveland
et al., 1995) and (Cleaveland and Sims, 1996), respectively.

The rest of the paper develops along the following lines. Section 2 presents the VPL spec-
ification language. Section 3 discusses the library for synchronous communication utilized
by the code generator to achieve maximal platform independence, and its implementation
using the ACE NPI. Section 4 describes the VPL-to-C++ translator underlying the code
generator. The dining philosophers and RETHER case studies are the subject of Section 6,
while Section 8 offers our concluding remarks. For more details on the code-generation work
described here, the reader is referred to (Hansel, 2000).

2 VPL

VPL is intended to support the specification of hierarchical systems of concurrent processes
that communicate via message passing over typed channels. The VPL type system includes
integers of limited range as well as array and record type constructors. There is also a
special type synch for channels that transport no data and can only be used for process
synchronization. Message passing in VPL is binary and synchronous, requiring a handshake
between the sender and receiver for communication to occur. The language is equipped with

3

a formal operational semantics that precisely and unambiguously defines the execution steps
VPL designs may engage in. Consequently, VPL system designs are mathematical artifacts
and are thus candidates for model checking and other kinds of machine-assisted formal
analysis.

A VPL specification consists of a sequence of declarations, which may include declarations
of constants, types and systems. A system is either a network, consisting a collection of
subsystems and their interconnections, or a process, consisting of statements describing the
actions the process should perform. Each system specification, whether process or network,
consists of a header, local declarations, and body. The header specifies a unique name for
the subsystem and a list of “formal channels” that will be bound to actual channels when
the subsystem is instantiated. Actual channels must be type-consistent with the formal ones
introduced in the header.

Declarations local to a network may include specifications of the subsystems of the network
and local channels for communication between subsystems. The body of a network is a par-
allel composition of subsystems. A subsystem declared within a network can be instantiated
arbitrarily many times within the subsystem’s body.

Declarations local to a process consist of variable and procedure declarations. Procedure
bodies, like process bodies, are sequences of statements. Simple statements of VPL are as-
signments of arithmetic or boolean expressions to variables, and input/output operations
on channels of the form: cname ! expression, to send a message, and cname ? variable,
to receive a message. Complex statements include sequential composition, if-then-else,
while-do, and an “or-waiting” style of nondeterministic choice in the form of the select

statement.

To illustrate the language, the VPL specification given in Figure 2 defines a simple network,
net1, consisting of the parallel composition of three subsystems: processes sender (lines 5–
17), receiver (lines 18–24), and buffer (lines 25–40). Lines 41 and 42 contain declarations
of local channels that are used in the definition of the body (lines 43–45) to connect the
subsystems together. Process sender communicates with process buffer over channel c1
while buffer and receiver communicate over channel c2. Note that buffer is bidirectional;
its body contains a select statement that allows it initially to accept inputs on either of its
channels, after which it delivers an output on the other channel. In this example, it should
be noted that data only flows in one direction.

3 Library for Synchronous Communication

This section describes the library for synchronous communication upon which vpl2cxx is
built. We were faced with two primary challenges in implementing the library. Firstly, com-
munication in VPL is synchronous, whereas the basic communication primitives accessible
from ACE are asynchronous. The second problem is the presence of input and output guards

4

1: value MAX : 5 25: process buffer(chan1 : t, chan2: t)
2: type t: MAX 26: begin

27: var buf : t
3: network net1() 28: while (1=1)
4: begin 29: select

30: begin
5: process sender(chan : t) 31: chan1?buf;
6: begin 32: chan2!buf
7: var i : t 33: end
8: i := 0; 34: % begin
9: while (1=1) 35: chan2?buf;

10: begin 36: chan1!buf
11: chan!i; 37: end
12: if i=MAX-1 then 38: end
13: i := 0 39: end
14: else 40: end;
15: i := i + 1
16: end
17: end;

41: Channel c1 : t
18: process receiver(chan : t) 42: Channel c2 : t
19: begin
20: var i : t 43: sender(c1)
21: while (1=1) 44: | receiver(c2)
22: chan?i 45: | buffer(c1, c2)
23: end 46: end
24: end;

Fig. 2. An example VPL specification.

in VPL, i.e. send and receive statements appearing as the initial commands in select state-
ment alternatives. In such a setting, obtaining a symmetric, fully distributed, deterministic
solution to the input/output guard-scheduling problem is known to be impossible (Francez
and Rodeh, 1980). 2

To cope with the problem of input/output guard scheduling, we implemented two scheduling
protocols as part of our library for synchronous communication. One of these is deterministic
and its use is limited to VPL programs in which output guards are not allowed. (In practice,
many VPL specifications do not deploy output guards, so this restriction is a reasonable
one.) Our second protocol is randomized and allows the use of both input and output guards
in a VPL program. Both protocols are described in detail in Section 5.

Additionally, our implementation was guided by the following principles.

2 By symmetric we mean that all processes execute the same code; Fully distributed means that
there is no centralized structure on which the protocol relies. For example, a fully distributed
protocol can deploy shared variables but only if they are shared by at most two processes each.
Deterministic means that processes may not toss coins.

5

vpl2cxx

C++ Code

Synchronous Comm. Library

ACE

VPL Model

Fig. 3. Overview of the vpl2cxx tool.

• Distributability. The generated code should be able to run over both local- and wide-area
networks using TCP/IP, in such a way that every process can run on a different ma-
chine. This means that each VPL process should be translated into a separate executable
C++ program that can be run in a stand-alone fashion, automatically establishing the
connections it needs to communicate.

• Portability. The generated code should be easily portable to different operating systems.
This led to the choice of C++ as the target language for translation and of the ACE
library (see Section 3.3) as the basis on which this communication library is built.

• Readability. It should be possible to easily compare the generated code with the input
VPL code. Therefore, the syntax of the communication library’s exported methods should
not differ from the syntax of the corresponding VPL statements more than is syntactically
necessary.

The role played by the library for synchronous communication, and the underlying ACE
package, in the overall scheme of the vpl2cxx tool is illustrated in Figure 3.

3.1 The API

The API of the synchronous communication library exports the following.

3.1.0.1 Name servers. Each channel is represented by the IP address of the machine
on which the associated server is running and the port of that machine on which the server
is listening. Name servers provide the needed mapping from channels names to IP/port
addresses. The command

6

server -sns[port]

initiates a name server that listens for commands over the specified port. If the port argument
is omitted, 9999 is chosen by default.

3.1.0.2 Channel servers. A channel server can be initiated via the command

server [-nsaddress:port] channel_name

Upon creation, the server opens a free port on which it will listen for requests; waits until
it is able to connect to the name server specified by the -ns option; registers its channel
with the name server; waits for clients to connect on the opened port; and then processes
client requests until the server is shut down. The waiting on the name server is due to the
potentially distributed nature of the execution environment the channel server and name
server cohabit.

Although channels in VPL have a designated type, no type is assigned to a server when it is
started. To send a value over a channel, the sending process must convert the value to a string
of bytes which are then transferred to the receiving process. The receiver has to transform
the received byte string back to the channel’s data type. The transformations between VPL
data types and byte strings are performed automatically by the VPLTypes class (see below).

3.1.0.3 The Channel class. The Channel class supplies the basic methods for a client
to connect to a server and perform synchronous input and output. In particular, there are
methods to create a channel (constructor), open a connection to the server for a channel of
a given name, close the connection to a channel, and perform synchronous input and output
to a channel.

3.1.0.4 The Action class. The Action class implements the VPL select statement
and contains methods to instantiate input, output and internal actions, construct an action
pool (i.e. pool of requested actions from which one should be selected for execution), add an
action to a pool, nondeterministically choose an action from a pool, return the index of the
action chosen, and clear a pool.

3.1.0.5 Classes for transforming types. As discussed above, no type is assigned to a
channel server. To send a value over a channel, the sending process must convert the value
to a string of bytes which are then transferred to the receiving process. The receiver has
to transform the received byte string back to the channel’s data type. The transformations
between VPL data types and byte strings are performed automatically by the set of classes
VPLXXX, where XXX is one of the basic VPL types: Synch, INT, Array, Record.

7

3.2 Development Tools

The communication library is also equipped with several useful development tools:

• Given a C++ program produced by the vpl2cxx code generator, the process simulation
tool allows one to interact with the program during execution via communication channels.
In particular, the user can connect to a name server, retrieve a list of all available channels,
and connect to their corresponding channel servers. The user can then interact with the
C++ program, writing communication actions as they would appear in a VPL select

statement in order to initiate communications.
• The logging tool can be used to track and record various kinds of events, such as the ids of

server threads (and corresponding channel names) and client threads (and corresponding
program names), and the data values successfully transmitted between sender and receiver
threads. A logging-level parameter allows the user to control the density of the log files
produced by the logging tool.

• The Message Sequence Chart generator produces a postscript or xfig file containing a
graphical rendering, in the form of a message sequence chart (ITU-TS, 1996), of the
communication events recorded in one or more log files.

3.3 The ACE Network Programming Interface

To make the communication library portable, we have implemented it on top of the ACE
(Adaptive Communication Environment) library (Schmidt and Huston, 2002). The ACE
library is a powerful tool that provides an array of communication services that run on
a large variety of underlying execution platforms. The functionality provided by ACE is
grouped into three main layers:

• The operating system adaptation layer shields the higher ACE layers from the underlying
operating system, making the ACE library platform independent. The methods of this
layer are called by our synchronous communication library to leverage ACE’s platform
independence.

• The C++ wrappers layer provides easy-to-use C++ wrapper classes for tasks like concur-
rency and synchronization (thread management, semaphores, timers).

• The framework layer provides high-level components for connection management and
communication-related event handling and demultiplexing. The synchronous communi-
cation library uses components in the framework layer to handle the connections between
clients and servers as well as timer scheduling.

8

4 The VPL to C++ Translator

The vpl2cxx translator translates VPL processes and networks into stand-alone programs.
In the case of a network, the resulting program contains code for starting servers for local
channels and for executing the subsystems containing in the network body. The user has
the option of generating a Unix shell script or stand-alone C++ program for this purpose.
The translation of VPL processes is relatively straightforward due to the presence of the
synchronous communication library discussed above. Two VPL control structures, however,
require special attention.

• In VPL, procedures are defined within the definition section of a process and therefore
all variables declared within the process and all channels passed to the process are also
visible within a procedure. Unfortunately, C++ (unlike C) does not allow the nesting of
function definitions. This problem can be worked around by defining all local variables of
a process globally in the target file of the process and translating the nested procedures
into functions within the same file.

• select statements in VPL may be nested. In order to determine the relevant set of com-
munication guards, the translator flattens nested select statements so that the branches
of the inner selects are brought to the outermost level and executed together with the
outer-most select alternatives.

The translator, like the CWB-NC, is implemented in Standard ML using the Standard ML
of New Jersey compiler (Appel and MacQueen, 1991). Moreover, it re-uses the CWB-NC’s
routines for parsing VPL, which were automatically generated by the PAC (Cleaveland et al.,
1995). The VPL parsing routines produce a tree of SML structures which the translator
recursively processes to generate the target C++ files.

5 Protocols for Input/Output Guard Scheduling

We now present the deterministic and randomized protocols for input/output guard schedul-
ing we implemented as part of our library for synchronous communication. The two protocols
share several important attributes:

• Both protocols possess a client/server architecture, with a client process for each VPL
process and a server process for each VPL channel. (Recall that communication in VPL
is binary, synchronous, and channel-oriented.)

• The client code for handling synchronous input and output in a non-guard context, which
appears in Figure 5, is the same for both protocols: a process reaching a synchronous input
or output statement in a non-guard context sends a request message to the appropriate
server and waits until the server responds affirmatively. The message type encodes the fact
that the communication request is occurring in a non-guard context.

• Both protocols make use of the data types MessageType and ChoiceType given in Figure 4.

9

type MessageType = record
type : { REQ_IN, REQ_IN_GUARD,

REQ_OUT, REQ_OUT_GUARD,
ACK, NACK, CANCELED }

id : int
value : ValueType
sender : ConnectionType

end

type ChoiceType = record
type : { INPUT, OUTPUT, INTERNAL }
connection : ConnectionType
value : ValueType

end

Fig. 4. Common data types for both protocol versions.

Message Type Direction Meaning

REQ_IN Client →Server A client requests an input

REQ_OUT Client →Server A client requests an output

REQ_IN_GUARD Client →Server A client requests an input within a non-
deterministic choice

REQ_OUT_GUARD Client →Server A client requests an output within a non-
deterministic choice (only in randomized
polling protocol)

ACK Server →Client A match was found

Client →Server A reported match was accepted (only in
restriction protocol)

NACK Server →Client No match was found

Client →Server A reported match was rejected / cancel
previously sent requests (only in restric-
tion protocol)

CANCELED Server →Client Previously sent requests have been can-
celed (only in restriction protocol)

Table 1
Meaning of messages within the protocols.

MessageType defines a structure for the messages that are exchanged between clients and
servers, and contains the following fields:

• type holds the type of the message; the significance of these message types is explained
in Table 1.

• id is used to identify a message with a specific request sent by a client.
• value: If a message has to transport a value, it is stored in this field.

10

1 procedure input(connection : ConnectionType, ref value : ValueType)
2 begin
3 send <REQ_IN> to connection
4 receive message from connection
5 if message.type = ACK then
6 value = message.value
7 else
8 Protocol - Error !
9 endif

10 end

11 procedure output(connection : ConnectionType, value : ValueType)
12 begin
13 send <REQ_OUT, value> to connection
14 receive message from connection
15 if message.type <> ACK then
16 Protocol - Error !
17 endif
18 end

Fig. 5. Simple input and output handling on client side.

• The field sender contains the address of the sender; it is set implicitly by the sender and
allows the receiver to ascertain the sender’s identity.

In the pseudo-code for the protocols, MessageType is instantiated using the shorthand tuple
notation <message_type, id, value>. Moreover, id and/or value are sometimes omitted,
depending on the context.

Regarding the second common type, ChoiceType, an array of ChoiceType is used to represent
the possible choices in a non-deterministic choice, i.e., VPL select statement. ChoiceType
contains the following fields:

• type defines the type of a choice: INPUT, OUTPUT or INTERNAL. In the case of an
INTERNAL choice, no communication takes place and this corresponds to the situation
where a non-communication statement such as an assignment statement appears in a guard
position.

• connection identifies the connection to the server that represents the channel on which
an input or output is to be performed (undefined if type is INTERNAL).

• value holds the value to be sent if type is OUTPUT, or the received value if type is
INPUT.

5.1 Deterministic Protocol

The deterministic protocol for input/output guard scheduling is applicable to VPL specifi-
cations in which output statements do not appear as guards in select statements. Figure 6

11

1 function select(choice_count : int, choices : Array of ChoiceType) : int
2 begin
3 var connections : set of ConnectionType
4 connection_states : array[choice_count] of {ENABLED,DISABLED,UNKNOWN}
5 unknown_state_count : int
6 selected : int
7
8 unknown_state_count:=0
9 for i=1 to choice_count do

10 if choices[i].type=INPUT then
11 send <REQ_IN_GUARDED,i> to choices[i].connection
12 connection_states[i] := UNKNOWN
13 unknown_state_count := unknown_state_count + 1
14 add choices[i].connection to connections
15 else if choices[i].type=INTERNAL then
16 connection_states[i] := ENABLED
17 else
18 print("Output guards not handled by deterministic protocol.")
19 endif
20 endfor
21 selected:=-1
22 while selected<0 do
23 wait for message on connections
24 if message.type=ACK then
25 if connection_states[message.id]=UNKNOWN then
26 unknown_state_count:=unknown_state_count - 1
27 endif
28 connection_states[message.id]:=ENABLED
29 choices[message.id].value:=message.value
30 else if message.type=NACK then
31 if connection_states[message.id]=UNKNOWN then
32 unknown_state_count:=unknown_state_count - 1
33 endif
34 connection_states[message.id]:=DISABLED
35 endif
36 if unknown_state_count=0 then
37 selected := {randomly choose an enabled action, -1 if all disabled}
38 if selected>=0 and choices[selected].type<>INTERNAL then
39 send <ACK, selected> to choices[selected].connection
40 endif
41 endif
42 endwhile
43 for i=1 to choice_count do
44 if choices[i].type<>INTERNAL AND i<>selected
45 send <NACK> to choices[i].connection
46 repeat
47 wait for message on choices[i].connection
48 until message.type=CANCELED
49 endif
50 endfor
51 return selected
52 end

Fig. 6. Client side of the deterministic protocol.

12

1 var inQueue : Queue of MessageType
2 var outQueue : Queue of MessageType

3 procedure server(socket)
4 begin
5 while true do
6 listen on socket for incoming message
7 if message.type=NACK then
8 remove all messages sent by message.sender from inQueue
9 send <CANCELED, message.id> to message.sender

10 else if message.type=REQ_IN_* then
11 server_process_inreq(message)
12 else if message=REQ_OUT then
13 server_process_outreq(message)
14 endif
15 endwhile

Fig. 7. Server main-loop of the deterministic protocol.

contains the code executed by clients (i.e., translated VPL processes) upon reaching a select
statement. It is structured as the function select() which takes as an input parameter an
array of records of type ChoiceType, representing all of the VPL statements appearing as
guards in the select statement in question. A guard may be an input statement or an in-
ternal action corresponding to a non-communication statement. In the latter case, no action
is taken by the function.

For each input guard in the array, the protocol sends a message to the server corresponding
to the input channel named in the guard (recall that the address of the server is available in
field connection of ChoiceType). Such a message represents a request by the client to the
server to find a matching communication partner for the input guard in question. The client
then listens for ACK (“enabled”) or NACK (“not enabled”) messages from all (channel)
servers to which requests were sent. When all statuses are known, the client randomly picks
one of the enabled actions and confirms it by sending the appropriate server an ACK. If
no action is enabled, the client waits until a server responds with ACK. Assuming a client
has chosen an enabled action on which to proceed, it cancels its other pending requests by
sending a NACK to the other servers. The client can proceed with its communication after
receiving CANCELED messages in response to the NACKs it has sent out.

The server, on the other hand, maintains two queues, one for pending input requests (inQueue)
and one for pending output requests (outQueue). It executes an infinite loop (Figure 7) lis-
tening for incoming messages, and takes the following actions depending upon the type of the
message received (the notation REQ_IN_* in line 10 stands for “REQ_IN or REQ_IN_GUARD”):

NACK: In this case, a client wants to cancel its pending requests. The server dequeues
these requests and responds with CANCELED.

Input Request: The code executed by the server for input requests is given in Figure 8. It
first checks if a matching request is available in the queue of pending output requests. If

13

1 procedure server_process_inreq(message : MessageType)
2 begin
3 var p_message : MessageType
4 if outQueue={} then
5 // no partner available
6 enqueue message to inQueue
7 if message.type=REQ_IN_GUARD then
8 send <NACK, message.id> to message.sender
9 endif

10 else
11 // partner available
12 p_message:=head of outQueue
13 send <ACK, message.id, p_message.value> to message.sender
14 if message.type=REQ_IN_GUARD then
15 // send confirmation and wait for response
16 do
17 receive message from message.sender
18 if message.type=REQ_IN_GUARD then
19 send <ACK, message.id, p_message.value> to message.sender
20 endif
21 while message.type=REQ_IN_GUARD
22 end
23 if message.type=NACK then
24 send <CANCELED, message.id> to message.sender
25 else
26 send <ACK, message.id> to p_message.sender
27 dequeue head of outQueue
28 endif
29 endif
30 end

Fig. 8. Server input-request-handling code of the deterministic protocol.

not, the request is stored as pending and, if the request was a guard, the client is notified
via a NACK that no match was found. If a matching output request is found, the server
reports the match back to the client with an ACK message. If the request was a guard,
it is possible that the client has in the meanwhile acted on some other alternative. Thus,
the server must wait to discover whether the client accepts or rejects the reported match.
In the former case, the client sends the server an ACK to which the server responds with
ACK. In the latter case, the client sends a NACK which the server responds to with
CANCELED.

Output request: The code executed by the server for output requests is given in Figure 9.
The actions taken by the server in this case are similar to the case of input requests,
with the following exception. Since output statements may not appear as guards, the
server must only wait for confirmation for the matching input request it has identified
as a match to the output request (and only if the matching input request represents a
communication guard), but not for the output request itself.

14

1 procedure server_process_outreq(message : MessageType)
2 begin
3 var done : boolean
4 var p_message : MessageType
5 done := FALSE
6 while (NOT done) AND (inQueue<>{}) do
7 // try next partner
8 p_message := dequeue head of inQueue
9 send <ACK, message.id, message.value> to p_message.sender

10 if p_message.type=REQ_IN_GUARD then
11 // send confirmation and wait for response
12 do
13 receive p_message from p_message.sender
14 if p_message.type = REQ_IN_* then
15 send <ACK, message.id, message.value> to p_message.sender
16 end
17 while p_message.type=REQ_IN_*
18 endif
19 if p_message.type=NACK then
20 // received NACK => respond with CANCELED
21 send <CANCELED, p_message.id> to p_message.sender
22 else
23 done := TRUE
24 endif
25 remove all messages sent by p_message.sender from inQueue
26 endwhile
27 if done then
28 // success => inform sender of message
29 send <ACK, message.id> to message.sender
30 else
31 enqueue message to outQueue
32 if message.type = REQ_IN_GUARD then
33 send <NACK, message.id> to message.sender
34 endif
35 endif
36 end

Fig. 9. Server output-request-handling code of the deterministic protocol.

5.2 Example

To illustrate how the deterministic protocol works, consider the simple VPL program of
Figure 10 consisting of a network of two sending processes, one sending on channel a and
the other on channel b, and a receiving process listening on both (nondeterministically).
Figure 11 contains a Message Sequence Chart (see Section 3.2) depicting the actual messages
transmitted by the deterministic protocol. The participating servers and clients are each
represented as a vertical line. Servers are titled by the name of the channel they are serving,

15

network net3()
begin

process sender(chan : synch)
begin
while true do chan!* end

end;

process selecter(chan1 : synch, chan2 : synch)
begin
while true do select chan1?* % chan2?* end end

end;

channel a : synch
channel b : synch

sender(a) | selecter(a, b) | sender(b)
end;

Fig. 10. Example VPL program with two senders and one receiver.

33pc

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1.283

0.000

a!*

2.466

Fig. 11. Run of the example in Figure 10 using the deterministic protocol. This is a diagram of an
actual run of this network. The dashed horizontal lines represent a time span of one millisecond.

16

clients by the communication actions they are trying to perform. The shaded boxes indicate
intervals where a client/server is blocked while waiting for a response. Time is displayed
along the vertical axis, each division representing one millisecond. To avoid empty space in
the diagram, the time axis is interrupted where a longer period of inactivity occurs.

In Figure 11, processes 1 (a!*) and 3 (b!*) start by sending their (non-guard) output requests
to the servers. Next, process 2 (a?* % b?*) sends its (guarded) input requests, to which the
servers both respond with ACK since they can offer a match. After process 2 receives both
responses, it chooses a match (here it chooses channel “b”) and sends a confirmation back to
channel b’s server who reports it to process 3. Because process 2 has made its choice, it must
cancel its other request on channel a. Meanwhile, process 3 sends its next output request.

5.3 Randomized Protocol

For VPL specifications in which both input and output statements can appear as guards
in select statements, we have implemented a guard-scheduling algorithm that relies on
randomized polling and is inspired by the randomized algorithms of (Francez and Rodeh,
1980; Joung, 2000). Such algorithms achieve a notion of “correctness (freedom from deadlock
and starvation) with probability 1”.

Like the deterministic protocol, the randomized protocol is client/server-based, with clients
corresponding to VPL processes and servers corresponding to VPL channels. The proto-
col works as follows. Upon reaching a select statement at which a certain collection of
input/output guards is enabled, a process (client) chooses one of the guards randomly in
search of a communication partner. The client thus sends a request to the appropriate server
indicating the nature of the communication guard. If the server is successful in finding a
match, it will return an ACK to the client with the information the client needs to effect the
communication. If unsuccessful, it will return a NACK and the client will randomly choose
another guard and repeat the protocol. This is in contrast to the deterministic protocol,
which launches requests for all of its input guards at once.

The pseudo-code for the client-side of the randomized protocol is given in Figure 12. As for
the deterministic protocol, the client code is organized as function select(), which has an
input parameter an array of records of type ChoiceType.

The server, on the other hand, maintains a pool of pending input and output requests, some
of which may have come from clients attempting a communication in a non-guard position,
and are thus willing to wait “indefinitely”. The server, upon receiving a new request, searches
the pool for a match. If a match is found, both clients (communication is binary) are sent an
ACK and the matching request dequeued. If a match is not found, the server starts a timer
and waits for incoming requests until a match is found or the timer expires. In the former
case, an ACK is sent to both clients and the timer is canceled. In the latter case, a NACK
is sent to the requesting client and its request is dequeued. The pseudo-code for the server

17

1 function select(choice_count:int, choices:Array of ChoiceType) : int
2 begin
3 var selected : int
4 selected := -1
5 while selected<0 do
6 selected := choose random number between 0 and choices_count-1
7 if choices[selected].type=INTERNAL then
8 // action was internal => we’re done
9 else

10 // action was either INPUT or OUTPUT
11 if choices[selected].type=INPUT then
12 send <REQ_IN_GUARD> to choices[selected].connection
13 else
14 send <REQ_OUT_GUARD,choices[selected].value>

to choices[selected].connection
15 endif
16 receive message from choices[selected].connection
17 if message.type = ACK then
18 // response was ACK => we’re done
19 if choices[selected].type = INPUT then
20 choices[selected].value = message.value
21 endif
22 else if message.type = NACK then
23 // response was NACK => action was not performed
24 selected := -1
25 else
26 protocol-error !
27 endif
28 endwhile
29 return selected
30 end

Fig. 12. Handling of a non-deterministic choice in the randomized polling protocol

side of the randomized protocol is given in Figures 13 and 14.

5.4 Example

The need for randomization in the protocol can be understood by considering a ring network
of three processes, each of which attempts to execute a select statement consisting of two
communication guards: an input guard targeting the process on the left and an output
guard targeting the process on the right. The VPL code for such a network is given in
Figure 15. In a distributed, symmetric (all processes execute the same code) environment
in which processes are not allowed to toss coins, a potential outcome is that all processes
independently choose their input guards, leading to deadlock. Randomization breaks such
symmetry and ensures that if a communication between two processes is enabled infinitely

18

1 procedure server(socket)
2 begin
3 var inQueue : Queue of MessageType
4 var outQueue : Queue of MessageType
5 var bufferQueue : Queue of MessageType
6 var request : MessageType

7 while true
8 if bufferQueue is empty then
9 dequeue request from bufferQueue

10 else
11 wait for request on socket
12 endif
13 if (request.type=REQ_IN_*) AND (outQueue<>{}) then
14 dequeue match from outQueue
15 send <ACK, match.value> to request.connection
16 send <ACK> to match.connection
17 else if (request.type=REQ_OUT_*) AND (inQueue<>{}) then
18 dequeue match from inQueue, set found:=TRUE if found
19 send <ACK, request.value> to match.connection
20 send <ACK> to request.connection
21 else
22 if request = *_GUARD then
23 call server_delay(request, bufferQueue)
24 else
25 if request.type=REQ_IN_* then
26 enqueue request to inQueue
27 else
28 enqueue request to outQueue
29 endif
30 endif
31 endwhile
32 endwhile
33 end

Fig. 13. The server main loop of the randomized polling protocol

often, then some communication will eventually take place with probability 1 (Francez and
Rodeh, 1980).

Figure 16 contains a message sequence chart (MSC) depicting the messages exchanged by the
randomized protocol during an execution of the ring network example of Figure 15. The MSC
illustrates how the randomized protocol is able to find communication partners for this ring of
nondeterministic processes: during the underlying execution, a communication over channel
a succeeds, followed by a communication over channel b, followed by a communication over
channel c, etc. The MSC also illustrates the situation where a client’s request cannot be
satisfied and must be rejected with NACK. This occurs in process 2 (b?* % c!*) at time 0.444
and in process 3 (a?* % b!*) at time 0.464. In both cases, the process again chooses another

19

1 procedure server_delay(request : MessageType,
ref bufferQueue : Queue of MessageType)

2 begin
3 var newRequest : MessageType
4 var done : BOOLEAN
5 set timer to expire in x milliseconds
6 done := FALSE
7 while NOT done do
8 wait until newRequest is received on port or timer is expired
9 if timer is expired then

10 send <NACK> to request.connection
11 done := TRUE
12 else
13 if (newRequest=REQ_IN_* and request=REQ_OUT_*) or
14 (newRequest=REQ_OUT_* and request=REQ_IN_*) then
15 cancel timer
16 if request.type=REQ_OUT_*
17 send <ACK, processedRequest.value> to newRequest.connection
18 send <ACK> to request.connection
19 else
20 send <ACK, newRequest.value> to request.connection
21 send <ACK> to newRequest.connection
22 endif
23 done := TRUE
24 else
25 enqueue newRequest to bufferQueue
26 endif
27 endif
28 endwhile
29 end

Fig. 14. The server delay code of the randomized polling protocol

channel on which it wants to communicate and continues the protocol.

5.5 Complexity Analysis

The computational complexity of the deterministic and randomized guard-scheduling pro-
tocols can be analyzed in terms of the expected number of message exchanged between
clients and servers during the execution of function select() (Figures 6 and 12). Assume
a VPL select statement having k alternatives; i.e. the value of parameter choice_count

of function select() is k. For the deterministic protocol, the expected number of messages
exchanged is linear in k. More precisely, the following messages are transmitted:

(1) The client sends k requests to the servers.
(2) All k servers send back a NACK or ACK message. Every server that sent ACK, waits for

20

1 network net2()

2 begin

3 process p(in : synch, out : synch)

4 begin

5 while true do

6 select

7 in?*

8 %

9 out!*

10 end

11 end

12 end;

13 channel a : synch

14 channel b : synch

15 channel c : synch

16 p(c, a) | p(a, b) | p(b, c)

end;

Fig. 15. A VPL network forming a ring of three nondeterministic processes.

the client’s response. Servers that sent NACK might subsequently send ACK.
(3) The client sends ACK to one server and NACK to the k − 1 other servers.
(4) The k − 1 servers receiving NACK respond with CANCELED.

In the worst case, all servers first send NACK, followed by ACK, resulting in k ∗ 5− 1 messages.
In the best case, the number of messages is reduced to k ∗ 4 − 1.

In the case of the randomized protocol, the expected number of messages needed to achieve
communication is O(k2). To understand how this bound is derived, first recall that commu-
nication in VPL is binary (and synchronous). Therefore, effecting communication in a VPL
system is tantamount to an agreement problem between two processes. Secondly, note that
the probability that two processes (independently) choose matching alternatives is 1

k2 . Given
that, for each attempt a process makes at finding a communication partner, the correspond-
ing client and server processes each transmit a constant number of messages, the bound of
O(k2) expected messages follows.

5.6 Verification Results

To gain confidence in the correctness of our guard-scheduling protocols, we specified them in
VPL and used the CWB-NC’s equivalence checking and model checking facilities to verify
several (finite-state) instances of the protocols. In the case of the deterministic protocol, one
such instance we considered involved the example VPL network of Figure 10. In particu-

21

33pc

��
��
��

��
��
��

��
��
��
��

0.461

0.451

0.441

0.431

0.421

I

I

a

0.411

Fig. 16. An example run of the network in Figure 15 using the randomized protocol.

22

lar, we turned this VPL program into a specification of the protocol by augmenting each
sender process with an external channel, and having the sender processes signal success over
their respective external channels whenever they succeed in communicating with the selec-
tor process. The VPL encoding of the deterministic protocol (Figures 6 to 9) was similarly
augmented with external channels, and the CWB-NC’s decision procedure for observational
equivalence (Milner, 1989) was applied to the VPL encoding of the protocol and its specifi-
cation. A result of true was obtained indicating that the protocol implementation is indeed
observationally equivalent to its specification.

The CWB-NC transforms each VPL program it processes into a labeled transition system
(LTS), and by looking at the number of states and transitions in such an LTS, we can
get an idea of the complexity of the specification. In the case of the VPL encoding of the
deterministic protocol instantiated on the VPL network of Figure 10, the underlying LTS had
11,095 states and 31,052 transitions. Checking this encoding for observational equivalence
with its specification took 33 minutes of user time on a SUN Ultra workstation, using a
maximum of 150MB of memory.

We also used the CWB-NC to check this example for the absence of livelock. In particular,
the CWB-NC’s model checker was applied to the VPL encoding of the deterministic protocol
to check the following CTL temporal-logic formula:

AG AF (<p1c1!*>tt \/ <p3c2!*>tt)

This formula states that, for every state, all computations originating from it eventually
reach another state in which one of the senders signals successful communication. This
model-checking computation also returned a result of true and took about one minute of
computation time.

Several instances of the randomized protocol were also verified in a similar manner. One
such instance we considered was the ring example of Figure 15. The LTS corresponding
to the VPL encoding of the randomized protocol on this example consisted of 9,107 states
and 30,300 transition. The total time need for equivalence checking was approximately two
minutes. Model checking the encoding for livelock did indeed reveal a livelock whose origin
can be traced to the fact that we encoded random choice using VPL nondeterministic choice.
As a result, a livelock manifested corresponding to each process repeatedly choosing its input
guard, or to each process repeatedly choosing its output guard. In practice, such livelocks
are not expected to occur since they correspond to zero-probability events when processes
are allowed to toss coins.

6 Experimental Results

This section compares the performance of vpl2cxx-generated C++ code with that of hand-
written C++ code. Two applications are considered: the well-known dining philosophers

23

cwb-nc> chk diningphil "AG <->tt"

Invoking alternation-free model checker.

Building automaton...

..

States: 270

Transitions: 918

Done building automaton.

TRUE, the agent satisfies the formula.

Execution time (user,system,gc,real):(1.950,0.010,0.020,1.954)

Fig. 17. Output of CWB-NC on VPL specification for dining philosophers.

problem, and a real-time Ethernet protocol.

6.1 Dining Philosophers

We coded a solution to the dining philosophers problem in VPL, verified its correctness
using the CWB-NC, and ran vpl2cxx to automatically generate C++ code. The problem
is simple enough that its VPL encoding fits on one page. There is also a C++ solution
based on POSIX threads available from the web which we used for benchmarking purposes:
http://hissa.nist.gov/dads/HTML/diningphilos.html

In the dining philosophers problem, there are five philosophers (processes) sitting around a
circular table. Between each pair of philosophers lies a single chopstick and in the center of
the table lies a bowl of spaghetti. Each of the philosophers repeatedly cycles through three
stages of behavior: thinking, hungry and eating. To transition from the hungry to eating
stage, a philosopher must gain control of the chopsticks to his immediate left and right. This
is therefore a problem of contention for shared resources and can be solved by associating
a binary semaphore with each chopstick. To avoid deadlock, we insist that odd-numbered
philosophers first gain control of the chopstick on the left and subsequently the chopstick on
the right. For even-numbered philosophers we require just the opposite: first gain control of
the chopstick on the right and then the one on the left.

Appendix: A contains our VPL encoding of this protocol along with the C++ code generated
from running vpl2cxx on this specification. Note the similarity of the C++ code to the VPL
specification. The results of applying the CWB-NC to the VPL specification are given in
Figure 17. In particular, the CWB-NC’s model checker for the modal mu-calculus reports
that the specification satisfies the temporal-logic formula AG <->tt meaning that from every
reachable state in the specification’s underlying state space, a transition is possible (i.e. the
system is deadlock-free). The CWB-NC took less than 2 seconds of CPU time to make its
determination and found that the state space consisted of 270 states and 918 transitions.

To assess the performance of the C++ code generated by vpl2cxx for dining philosophers,
we instrumented it with code that generates random timing delays for the thinking and

24

Table 2
Performance comparison between C++ implementations of dining philosophers.

C++ from web vpl2cxx (randomized) vpl2cxx (deterministic)

Phil. Id No. Meals Avg. Wait No. Meals Avg. Wait No. Meals Avg. Wait

1 353 1.06705 437 0.51016 419 0.541981

2 361 0.904072 407 0.759533 393 0.738142

3 401 0.744364 404 0.776832 403 0.759603

4 407 0.723563 373 0.963298 376 0.89

5 423 0.53539 378 0.927725 366 0.951749

eating phases, and computes, for each philosopher, the total number of meals eaten and the
average time (in seconds) spent in the hungry (waiting) phase. Table 2 contains the results
of our benchmarking activity for the C++ code taken off the web, and for two versions of the
C++ code generated by vpl2cxx: the first of these implements the randomized algorithm
for input/output guard scheduling; the second is for the deterministic algorithm. Since there
are no output guards in the VPL specification, both versions may be used.

All results were obtained running Linux Kernel version 2.2.19 on a 700Mhz Pentium III
machine with 512MB of RAM. Each program was allowed to run for 1,000 seconds. The
results show that there is essentially no difference in performance between the C++ code
taken of the web and the two versions of the C++ code generated by vpl2cxx. 3

6.2 The RETHER Case Study

Rether is a software-based real-time Ethernet protocol originally developed at SUNY Stony
Brook and now sold commercially at RETHER Networks, Inc. (RNI01, 2001). The purpose
of this protocol is to provide guaranteed bandwidth and deterministic, periodic network
access to multimedia applications over commodity Ethernet hardware. It is designed as a
contention-free token bus protocol for the datalink layer of the ISO protocol stack, running
on top of a CSMA/CD physical layer. In (Du et al., 1999), we modeled RETHER in VPL
and verified, for a particular network configuration, that the protocol indeed makes good on
its bandwidth guarantees to real-time nodes without exposing non real-time nodes to the
possibility of starvation.

To assess the feasibility of our approach to automatically generating distributed prototypes
from VPL specifications, we ran vpl2cxx on the VPL specification of a four-node RETHER
network given in (Du et al., 1999). The results were very encouraging. The resulting C++

3 Due to the absence of output guards in the VPL specification for dining philosophers, little
difference, if any, was expected between the two vpl2cxx-generated versions. The results obtained
confirm this expectation.

25

Tool Specification Notation Graphical? Target Language

ACE (Bosco et al., 1997) TINA Yes CORBA/C++

CAPS (Luqi and Ketabchi, 1998) PSDL Yes Ada/C++/C

IOA (?) I/O Automata No Java

Open Cæsar (Garavel, 1998) LOTOS Yes C

PEP (Grahlmann, 1999) Petri Nets Yes C

Promela++ (Basu et al., 1998) Promela No C

Real-Time Workshop (The MathWorks Inc., 2001a) Simulink Yes C/Ada

Stateflow Coder (The MathWorks Inc., 2001b) Stateflow Yes C

Statemate (Harel et al., 1990) Statecharts Yes C/Ada

SYROCO (Sibertin-Blanc, 2001) high-level Petri Nets Yes C++

vpl2cxx VPL No C++
Table 3
Specification & Verification tools supporting code generation.

code is highly readable, bearing a close resemblance to the VPL specification from which it
derives. It is fully distributed and runs over TCP/IP.

To gauge the performance of the generated code, we inserted a counter and timer into the
C++ code for node0, measuring the intervals between receiving the token. The resulting
token cycle-time was determined to be 75ms (averaged over 3,000 cycles) on a 10M-bps
Ethernet with each node running the SunOS 5.6 operating system. This is approximately
10 times the value observed for the actual RETHER protocol running on a native execution
platform. The primary reason for the increased cycle rotation time can be attributed to the
fact that the version of RETHER implemented by the vpl2cxx-generated C++ code runs
in user mode, as opposed to kernel mode as is the case for the actual RETHER protocol.

7 Related Work

A number of specification and verification tool suites provide some form of code generation,
differing in terms of the specification language supported, the kinds of analyses allowed on
specifications, the target programming language, and intended execution platform of the
generated code (e.g. sequential, shared-memory, distributed). Table 3 gives a representative
sampling of such tools. (The column entitled “Graphical?” in Table 3 indicates for each tool
whether the specification notation supported by the tool is graphical in nature.) Further
references can be found in the survey article (Hasselbring, 2000).

Three recent approaches to rapid system prototyping share our methodological goal of being

26

able to generate implementations of distributed systems from formal specifications (Regep
and Kordon, 2001; Navarre et al., 2001; Chachkov and Buchs, 2001). All three support an
object-oriented approach to system prototyping and use some variant of Petri Nets as the
underlying formal modeling technique. The approach of (Regep and Kordon, 2001) is linked
to a UML-based methodology, while (Navarre et al., 2001) targets highly interactive appli-
cations such as air traffic control systems; (Chachkov and Buchs, 2001) targets embedded
controllers. The approach of (Navarre et al., 2001) does not support the generation of code
per se, but rather allows the user to associate graphical rendering methods with Petri Net
transitions and state changes.

8 Conclusions

We have presented vpl2cxx, a translator that automatically generates distributed C++
prototypes from validated VPL specifications. The translator is built around a library for
synchronous communication and nondeterministic selection of communication guards, result-
ing in generated code that is readable and portable. The library includes implementations
of two new client/server-based algorithms for the input/output guard scheduling problem: a
deterministic protocol for VPL specifications in which output statements do not appear as
guards, and a randomized protocol for VPL specifications in which this restriction is lifted.

In terms of the correctness of our guard-scheduling algorithms, we have verified a number of
(finite-state) instances of a VPL encoding of both protocols using the CWB-NC’s equivalence
and model-checking facilities. For future work we would like to obtain general correctness
proofs, not limited to any particular instances, of both protocols.

Regarding future work, we are interested in extending vpl2cxx to code generation for hard
real-time systems, a class of distributed applications of growing importance. The ZEN (Klef-
stad et al., 2002) open-source real-time CORBA ORB (Object Request Broker), which is
inspired by the ACE-based ORB, TAO (Schmidt et al., 1998), appears to be a well-suited
middleware platform of choice for such an extension.

8.0.0.6 Acknowledgments. We would like to thank the anonymous referees for their
valuable comments and Yuh-Jzer Joung for answering our questions about the complex-
ity of the guard-scheduling problem. This research was supported in part by the National
Science Foundation, grants CCR-9505562 and CCR-9988155; the Army Research Office,
grants DAAD190110003 and DAAD190110019; and the Office of Naval Research, grant ONR
N000140110967 (DOD University Research Initiative (URI) award).

27

References

Appel, A. W., MacQueen, D. B., Aug. 1991. Standard ML of New Jersey. In: Proc. of Third
Int’l Sump. on. Prog. Lang. Implementation and Logic Programming. Springer-Verlag, pp.
1–13.

Basu, A., Morrisett, G., von Eieken, T., Jan. 1998. Promela++: A language for constructing
correct and efficient protocols. In: Proc. of IEEE INFOCOMM’98.

Bosco, B. G., Martini, G., Giudice, D. L., Moiso, C., Mar. 1997. An environment for speci-
fying, developing and generating TINA services. In: IFIP/IEEE Int’l Symp. on Integrated
Network Management.

Chachkov, S., Buchs, D., Jun. 2001. From an abstract object-oriented model to a ready-to-use
embedded system controller. In: Dollas and Wills (2001), pp. 142–148.

Cleaveland, R., Madelaine, E., Sims, S., May 1995. Generating front-ends for verification
tools. In: Brinksma, E., Cleaveland, R., Larsen, K., Steffen, B. (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Algorithms (TACAS ’95). Vol. 1019 of Lecture
Notes in Computer Science. Springer-Verlag, Aarhus, Denmark, pp. 153–173.

Cleaveland, R., Sims, S., Jul. 1996. The NCSU Concurrency Workbench. In: Alur, R., Hen-
zinger, T. A. (Eds.), Computer Aided Verification (CAV ’96). Vol. 1102 of Lecture Notes
in Computer Science. Springer-Verlag, New Brunswick, New Jersey, pp. 394–397.

Dollas, A., Wills, L. (Eds.), Jun. 2001. 12th IEEE International Workshop on Rapid System
Prototyping (RSP 2001). IEEE Computer Society Press, Monterey, CA.

Du, X., Smolka, S. A., Cleaveland, R., Nov. 1999. Local model checking and protocol analysis.
Software Tools for Technology Transfer 2 (3), 219–241.

Francez, N., Rodeh, M., 1980. A distributed abstract data type implemented by a prob-
abilistic communication scheme. In: Proceedings of 21st Symposium on Foundations of
Computer Science. pp. 373–379.

Garavel, H., 1998. OPEN/CÆSAR: An open software architecture for verification, simula-
tion, and testing. In: Proceedings of the Fourth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’98), Lecture Notes in
Computer Science. pp. 68–84.

Grahlmann, B., Jan. 1999. The State of PEP. In: A. M. H. (Ed.), Proc. of AMAST’98. Vol.
1548 of Lecture Notes in Computer Science. Springer-Verlag.

Hansel, D., May 2000. Generating C++ Code from VPL Specifications. Master’s thesis,
Technical University of Munich.

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-Trauring, A.,
Traktenbrot, M., Apr. 1990. STATEMATE: A working environment for the development
of complex reactive systems. IEEE Transactions on Software Engineering 16 (4), 403–414.

Hasselbring, W., Mar. 2000. Programming languages and systems for prototyping concurrent
applications. ACM Computing Surveys 32 (1), 43–79.

ITU-TS, 1996. ITU-TS Recommendation Z.120. Message Sequence Charts (MSC).
Jones, G., 1989. Programming in Occam 2, 2E. Prentice Hall.
Joung, Y.-J., Jul. 2000. Two decentralized algorithms for strong interaction fairness for

systems with unbounded speed variability. Theoretical Computer Science 243 (1-2), 307–
338.

28

Klefstad, R., Schmidt, D. C., O’Ryan, C., 2002. Towards highly configurable real-time object
request brokers. In: Proceedings of the Fifth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing.

Luqi, Ketabchi, M., Mar. 1998. A computer-aided prototyping system. IEEE Software ,
66–72.

Milner, R., 1989. Communication and Concurrency. International Series in Computer Sci-
ence. Prentice Hall.

Navarre, D., Palanque, P., Bastide, R., Sy, O., Jun. 2001. A model-based tool for interactive
prototyping of highly interactive applications. In: Dollas and Wills (2001), pp. 136–141.

Regep, D., Kordon, F., Jun. 2001. LfP: A specification language for rapid prototyping of
concurrent systems. In: Dollas and Wills (2001), pp. 90–96.

RNI01, 2001. RETHER Networks, Inc. Web Site. http://www.rether.com/.
Schmidt, D. C., Huston, S. D., 2002. C++ Network Programming: Mastering Complexity

Using ACE and Patterns. Addison-Wesley Longman.
Schmidt, D. C., Levine, D. L., Mungee, S., apr 1998. The design and performance of real-time

object request brokers. Computer Communications 21, 294–324.
Sibertin-Blanc, C., 2001. Cooperative objects: Principles, use and implementation. In: Agha,

G., De Cindio, F. (Eds.), Concurrent Object-Oriented Programming and Petri Nets. Lec-
ture Notes in Computer Science. Springer-Verlag, pp. 216–246.

Taft, S. T., Duff, R. A. (Eds.), 1997. Ada 95 Reference Manual: Language and Standard
Libraries, International Standard ISO/IEC 8652:1995(E). Lecture Notes in Computer Sci-
ence, vol. 1246, Springer-Verlag, iSBN 3-540-63144-5.

The MathWorks Inc., 2001a. http://www.mathworks.com/products/rtw/.
The MathWorks Inc., 2001b. http://www.mathworks.com/products/sfcoder/.

29

A VPL Source and Generated C++ Code for Dining Philosophers

A.1 VPL Source

network diningphil()

begin
process philosopher1(left_obtain : synch,

left_release : synch,
right_obtain : synch,
right_release : synch)

begin
while (true) do

{Eating process - Obtaining chopsticks}

{ odd numbered philosophers - first right, then left}
right_obtain!*;
left_obtain!*;

{Release process - releasing chopsticks}
left_release!*;
right_release!*

end
end; {===Specifications of four other philosohpers similar===}

process chopstick (obtain : synch,
release : synch)

begin
while (1=1) do

obtain?*;
release?*

end
end;

channel obtain1 : synch
channel release1 : synch
channel obtain2 : synch
channel release2 : synch
channel obtain3 : synch
channel release3 : synch
channel obtain4 : synch
channel release4 : synch
channel obtain5 : synch
channel release5 : synch

30

philosopher1(obtain2,release2,obtain1,release1)
| philosopher2(obtain3,release3,obtain2,release2)
| philosopher3(obtain4,release4,obtain3,release3)
| philosopher4(obtain5,release5,obtain4,release4)
| philosopher5(obtain1,release1,obtain5,release5)
| chopstick(obtain1,release1)
| chopstick(obtain2,release2)
| chopstick(obtain3,release3)
| chopstick(obtain4,release4)
| chopstick(obtain5,release5)

end;

A.2 Translated Process “diningphil”

//===
// diningphil.cxx
//
// Generated by vpl2cxx. Source file was ’diningphil.vpl’.
// Mon Oct 1 08:37:57 2001
//===

#include <ace/SString.h>

void exec(int background, char *proc, ...)
{

// construct command
ACE_CString cmd = proc, *arg;

va_list argp;
va_start(argp, proc);

do
{

arg = va_arg(argp, ACE_CString *);
if(arg) cmd += ACE_CString(" ") += *arg;

}
while(arg);

// execute command
if(background)
{

if(ACE_OS::fork()== 0)
{

system(cmd.c_str());

31

exit(0);
}

}
else
system(cmd.c_str());

}

int main (int argc, char *argv[])
{

// get switches

ACE_CString switches;

int n=1, go=1;
while((n < argc) && go)
if(argv[n][0] != ’-’)

go = 0;
else

switches += ACE_CString(" ") += ACE_CString(argv[n++]);

if(argc < n+1)
{

cout << "argument missing" << endl;
return -1;

}

// get scope

ACE_CString scope;
if(argv[n][0] != 0) scope += ACE_CString(argv[n]) += ACE_CString(".");
scope += ACE_CString("diningphil");

// get passed channel-names

// construct names of internal channels

ACE_CString _obtain1 = scope; _obtain1 += ".obtain1";
ACE_CString _release1 = scope; _release1 += ".release1";
ACE_CString _obtain2 = scope; _obtain2 += ".obtain2";
ACE_CString _release2 = scope; _release2 += ".release2";
ACE_CString _obtain3 = scope; _obtain3 += ".obtain3";
ACE_CString _release3 = scope; _release3 += ".release3";
ACE_CString _obtain4 = scope; _obtain4 += ".obtain4";
ACE_CString _release4 = scope; _release4 += ".release4";
ACE_CString _obtain5 = scope; _obtain5 += ".obtain5";
ACE_CString _release5 = scope; _release5 += ".release5";

32

// start subsystems

exec(1, "diningphil_philosopher1", &switches, &scope, &_obtain2, &_release2, &_obtain1, &_rel
exec(1, "diningphil_philosopher2", &switches, &scope, &_obtain3, &_release3, &_obtain2, &_rel
exec(1, "diningphil_philosopher3", &switches, &scope, &_obtain4, &_release4, &_obtain3, &_rel
exec(1, "diningphil_philosopher4", &switches, &scope, &_obtain5, &_release5, &_obtain4, &_rel
exec(1, "diningphil_philosopher5", &switches, &scope, &_obtain1, &_release1, &_obtain5, &_rel
exec(1, "diningphil_chopstick", &switches, &scope, &_obtain1, &_release1, NULL);
exec(1, "diningphil_chopstick", &switches, &scope, &_obtain2, &_release2, NULL);
exec(1, "diningphil_chopstick", &switches, &scope, &_obtain3, &_release3, NULL);
exec(1, "diningphil_chopstick", &switches, &scope, &_obtain4, &_release4, NULL);
exec(1, "diningphil_chopstick", &switches, &scope, &_obtain5, &_release5, NULL);

// start server for network-internal channels

exec(0, "server", &switches, &_obtain1, &_release1, &_obtain2, &_release2,
&_obtain3, &_release3, &_obtain4, &_release4, &_obtain5, &_release5, NULL);

}

33

A.3 Translated Process “diningphil philosopher1”

//===
// diningphil_philosopher1.cxx
//
// Generated by vpl2cxx. Source file was ’diningphil.vpl’.
// Mon Oct 1 08:37:57 2001
//===

#include "Channel.hxx"
#include "Action.hxx"
#include "VPLTypes.hxx"

VPLSynch _synch; // used to translate ’[channel]?*’
ActionPool _choices; // used to store choices of a ’select’-statement

// process-local type declarations

// channels passed to process
Channel< VPLSynch > left_obtain;
Channel< VPLSynch > left_release;
Channel< VPLSynch > right_obtain;
Channel< VPLSynch > right_release;

// process-local variable declarations

void philosopher1()
{

while(1)
{

right_obtain << _synch;
left_obtain << _synch;
left_release << _synch;
right_release << _synch;

} // while

}

//--------------------------------- main -------------------------------------

int main (int argc, char *argv[])
{

// parse arguments
int i=1, go=1;
while((i < argc) && go)
{

34

if(strncmp(argv[i], "-", 1) != 0)
go = 0;

else if(strncmp(argv[i], "-v", 2) == 0)
{ i++; Global_LogFileWriter.startLogging(atoi(argv[i-1]+2), 0); }

else if(strncmp(argv[i], "-w", 2) == 0)
{ i++; Global_LogFileWriter.startLogging(atoi(argv[i-1]+2), 1); }

else if(strncmp(argv[i], "-ns", 3) == 0)
{ i++; ChannelGeneric::setNameServer(ACE_INET_Addr(argv[i-1]+3)); }

else
cout << "Warning: Unrecognized switch: " << argv[i++] << endl;

}

if(argc < i+5)
{

cout << "argument missing" << endl;
return -1;

}

try
{

ChannelGeneric::setProcessName(argv[0]);

// open channels
left_obtain.open(argv[i+1]);
left_release.open(argv[i+2]);
right_obtain.open(argv[i+3]);
right_release.open(argv[i+4]);

// run process
philosopher1();

}
catch(SE_SendRec se)
{}

catch(SocketException se)
{

cout << "Exception: " << se << endl;
}

return 0;
}

35

A.4 Translated Process “diningphil chopstick”

//===
// diningphil_chopstick.cxx
//
// Generated by vpl2cxx. Source file was ’diningphil.vpl’.
// Mon Oct 1 08:37:57 2001
//===

#include "Channel.hxx"
#include "Action.hxx"
#include "VPLTypes.hxx"

VPLSynch _synch; // used to translate ’[channel]?*’
ActionPool _choices; // used to store choices of a ’select’-statement

// process-local type declarations

// channels passed to process
Channel< VPLSynch > obtain;
Channel< VPLSynch > release;

// process-local variable declarations

void chopstick()
{

while((1==1))
{

obtain >> _synch;
release >> _synch;

} // while

}

//--------------------------------- main -------------------------------------

int main (int argc, char *argv[])
{

// parse arguments
int i=1, go=1;
while((i < argc) && go)
{

if(strncmp(argv[i], "-", 1) != 0)
go = 0;

else if(strncmp(argv[i], "-v", 2) == 0)
{ i++; Global_LogFileWriter.startLogging(atoi(argv[i-1]+2), 0); }

36

else if(strncmp(argv[i], "-w", 2) == 0)
{ i++; Global_LogFileWriter.startLogging(atoi(argv[i-1]+2), 1); }

else if(strncmp(argv[i], "-ns", 3) == 0)
{ i++; ChannelGeneric::setNameServer(ACE_INET_Addr(argv[i-1]+3)); }

else
cout << "Warning: Unrecognized switch: " << argv[i++] << endl;

}

if(argc < i+3)
{

cout << "argument missing" << endl;
return -1;

}

try
{

ChannelGeneric::setProcessName(argv[0]);

// open channels
obtain.open(argv[i+1]);
release.open(argv[i+2]);

// run process
chopstick();

}
catch(SE_SendRec se)
{}

catch(SocketException se)
{

cout << "Exception: " << se << endl;
}

return 0;
}

37

