Poison Frogs! Targeted Poisoning Attacks on Neural Networks
What are poisoning attacks?
Before deep learning algorithms can be deployed in security-critical applications, their robustness against adversarial attacks must be put to the test. The existence of adversarial examples in deep neural networks (DNNs) has triggered debates on how secure these classifiers are. Adversarial examples fall within a category of attacks called evasion attacks. Evasion attacks happen at test time – a clean target instance is modified to avoid detection by a classifier, or spur misclassification.