Non Convex

Visualizing the Loss Landscape of Neural Nets

It is well known that certain neural network architectures produce loss functions that train easier and generalize better, but the reasons for this are not well understood. To understand this better, we explore the structure of neural loss functions using a range of visualization methods.

Continue reading


PhasePack is a software library that implements a wide range of different phase retrieval algorithms. It can also produce algorithm comparisons, and comes with empirical datasets for testing on real-world problems.

Continue reading


A number of non-convex optimization problems can be convexified by “lifting” strategies. These methods yield convex formulations at the cost of substantially increased dimensionality. PhaseMax is a new type of convex relaxation that does not require lifting; it solves problems in their original low-dimensional parameter space.

Continue reading