Machine Learning

Poison Frogs! Targeted Poisoning Attacks on Neural Networks

Data poisoning is an adversarial attack in which examples are added to the training set of a classifier to manipulate the behavior of the model at test time. We propose a new poisoning attack that is effective on neural nets, and can be executed by an outsider with no control over the training process.

Continue reading

Visualizing the Loss Landscape of Neural Nets

It is well known that certain neural network architectures produce loss functions that train easier and generalize better, but the reasons for this are not well understood. To understand this better, we explore the structure of neural loss functions using a range of visualization methods.

Continue reading

Stabilizing GANs with Prediction

Adversarial networks are notoriously hard to train, and simple training methods often collapse. We present a simple modification to the standard training method that increases stability. The method is provably stable for a class of saddle-point problems, and improves performance of numerous GANs.

Continue reading

Training Quantized Nets: A Deeper Understanding

Neural net parameters can often be compressed down to just one single bit without a significant loss in network performance, yielding a huge reduction in memory footprint and computational workload. We develop a theory of quantized nets, and explain the performance of algorithms for weight quantization.

Continue reading

Distributed Machine Learning

Classical machine learning methods, include stochastic gradient descent (aka backprop), work great on one machine, but don’t scale well to the cloud or cluster setting. We propose a variety of algorithmic frameworks for scaling machine learning across many workers.

Continue reading