About me
Xiaodi Wu ( in simplified Chinese )
I am an Assistant Professor in the Department of Computer Science and Institute for Advanced Computer Studies at the University of Maryland, College Park. I am also a Fellow at the Joint Center for Quantum Information and Computer Science (QuICS).
I received my Phd in theoretical computer science in 2013 (advisor: Yaoyun Shi) from the University of Michigan, Ann Arbor. I received my B.S. degree in mathematics and physics in 2008 from the Academic Talent Program, Tsinghua University.
Before coming to Maryland, I was an Assistant Professor in the Computer and Information Science Department at the University of Oregon from 2015 to 2017. Before that, I was a Postdoctoral Associate at Massachusetts Institute of Technology from 2013 to 2015 (advisor: Aram Harrow, Scott Aaronson, Edward Farhi and Peter Shor). I was also a Simons Research Fellow at the Simons Institute for the Theory of Computing at Berkeley, for the program of Quantum Hamiltonian Complexity in Spring 2014 (advisor: Umesh Vazirani). I also spent two summers at the Institute for Quantum Computing, University of Waterloo as a student intern (advisor: John Watrous).
Research Interests
My research aims to achieve endtoend quantum applications by investigating both the theoretical study of quantum information and computation and the software toolchain and system of quantum computers.
In particular, it aims to contribute to the development of quantum information and computation through the study in theoretical computer science, which includes:
quantum computational complexity
quantum algorithms for optimization and machine learning
quantum cryptography
quantum entanglement and sumofsquares (SoS) proofs.
It also aims to contribute to formal methods and programming languages in quantum computing, which includes:
verification of sequential, parallel, and concurrent quantum programs
abstractions for (domainspecific) quantum algorithms and novel semantic constructs (e.g., quantum recursion)
erroraware, reliable quantum program synthesis, especially optimized for nearterm quantum applications
formally verified software toolchain for quantum computing (e.g. a certified optimizing complier for quantum programs)
I am also interested in collaborating with experimentalists. Check my Research Overview for details of my existing and ongoing projects.
News
I am looking for motivated and talented students who love to work on quantum information and computation.
If you are interested in working with me, you are welcome to send me an email to let me know of your interest.
09/2019, our research paper Quantum Wasserstein Generative Adversarial Networks will appear at the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS 2019).
09/2019, I am helping manage the NSF Student Travel Grant (CCF1946395) for QIP 2020. Please submit your application according to the instruction by AoE November 4th, 2019.
07/2019, I am coorganizing the First International Workshop on Programming Languages and Quantum Computing (PLaQC 2020) at POPL 2020 with Michael Hicks and Robert Rand. The deadline for submission is AOE October 28, 2019.
06/2019, our research paper Verified Optimization in a Quantum Intermediate Representation (extended abstract) will appear at Quantum Physics and Logic (QPL 2019).
04/2019, our research paper Sublinear quantum algorithms for training linear and kernelbased classifiers will appear at the 36th International Conference on Machine Learning (ICML 2019).
04/2019, our research paper Quantum SDP Solvers: Large Speedups, Optimality, and Applications to Quantum Learning will appear at ICALP 2019.
11/2018, our research papers Quantum SDP Solvers: Large Speedups, Optimality, and Applications to Quantum Learning and Quantum algorithms and lower bounds for convex optimization will appear at QIP 2019.
10/2018, I am helping manage the NSF Student Travel Grant (CCF1840547) for QIP 2019. Please submit your application according to the instruction by AoE November 12th, 2018.
10/2018, our research paper Quantitative Robustness Analysis of Quantum Programs will appear at the 46th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2019).
09/2018, I am organizing a reading group on quantum programming languages in Fall 2018.
09/2018, I am organizing a workshop on the intersection of machine learning and quantum information (Videos and Slides NOW AVAILABLE) at QuICS on September 24  28, 2018.
03/2018, I regularly maintain a MiniLibrary on the selflearning materials and references for studying quantum information.
01/2017, our research papers General randomness amplification with nonsignaling security and Limitations of semidefinite programs for separable states and entangled games appeared at QIP 2017.
01/2017, our research paper Invariants of Quantum Programs: Characterizations and Generation appeared at the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017).
Research supported by

National Science Foundation (NSF)


Department of Energy (DOE)


Air Force Office of Scientific Research (AFOSR)

Contact
Office: IRB 5210
Address:
Computer Science
5109 Brendan Iribe Center for Computer Science and Engineering
8125 Paint Branch Drive
University of Maryland
College Park, MD 20742
Email: xwu (at) cs.umd.edu
